Reg. No. 2149

Hew Ight Institute

The Finest Institute For Medical Entrance Exams.
NATIONAL ELIGIBIITY OUMENIRANCETEST (UG)
SET : P2 [NEET-2019], Test held on 05 May 2019

Subject : CHEMISTRY

1. Under isothermal condition, a gas at 300 K expands from 0.1 to 0.25 L against a constant external pressure of 2 bar. Thge work done by the gas is: (Given that 1 L bar $=100 \mathrm{~J}$)
(1) -30 J
(2) 5 kJ
(3) 25 J
(4) 30 J
(1)
[NCERT XI-I-159]
Use the relation
$w=-P \Delta V$
2(0.25-0.1)
$=-30$ Joule
2. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is :
(1) $\mathrm{C}_{2} \mathrm{~A}_{3}$
(2) $\mathrm{C}_{3} \mathrm{~A}_{2}$
(3) $\mathrm{C}_{3} \mathrm{~A}_{4}$
(4) $\mathrm{C}_{4} \mathrm{~A}_{3}$
(3)
[NCERT XII-I-17]
' A ' atoms forms $\mathrm{HCP}=4$
'C' atoms occupy 75% O.V. $=\frac{3}{4} \times 4$
$\mathrm{C}_{3} \mathrm{~A}_{4}$
3. pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 9 . The solublility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is :
(1) 0.5×10^{-15}
(2) 0.25×10^{-15}
(3) 0.125×10^{-15}
(4) 0.5×10^{-15}
(1)
$\left[\mathrm{OH}^{-}\right]=10^{-5}$
$2 S=10^{-5}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}=\left(0.5 \times 10^{-15}\right)$
4. The number of moles of hydrogen molecules required to produce 20 moles of ammonia through Haber's process is :
(1) 10
(2) 20
(3) 30
(4) 40
(3)
[NCERT XI-I-17]
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
for 20 moles of NH_{3}, 30 moles of H_{2} are required.
5. For an ideal solution, the correct option is :
(1) $\Delta_{\text {mix }} \mathrm{S}=0$ at constant T and P
(2) $\Delta_{\text {mix }} \mathrm{V} \neq 0$ at constant T and P
(3) $\Delta_{\text {mix }} \mathrm{H}=0$ at constant T and P
(4) $\Delta_{\text {mix }} G=0$ at constabnt T and P
(3)
[NCERT XI-I-45]
For ideal solution

$$
\begin{aligned}
& \Delta S>0, \Delta G<0, \Delta H=0 \\
& \Delta V=0
\end{aligned}
$$

6. For a cell involving one electron $\mathrm{E}_{\text {cell }}^{\circ}=0.59 \mathrm{~V}$ at 298 K , the equilibrim constant for the cell reaction is :
[Given that $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}$ at $\mathrm{T}=298 \mathrm{~K}$]
(1) 1.0×10^{2}
(2) 1.0×10^{5}
(3) 1.0×10^{10}
(4) 1.0×10^{30}
(3)
[NCERT XII-I-66]
By using reaction
$\mathrm{E}_{\text {cell }}^{\circ}=\frac{0.059}{\mathrm{n}} \log \mathrm{K}_{\mathrm{c}}$
7. Among the following the one that is not a green house gas is:
(1) nitrous oxide
(2) methane
(3) oxone
(4) sulphur dioxide
(4)
[NCERT XI-II-404]
Green house gas are nitrous oxide, methane and ozone.
8. The number of sigma (σ) and pi (π) bonds in pent-2-en-4-yne is :
(1) 10σ bonds and 3π bonds
(2) 8σ bonds and 5π bonds
(3) 11σ bonds and 2π bonds
(4) 13σ bonds and no π bonds
(1)
[NCERT XI-II-327, Prob. No. 12.1]

10σ bond
3π bond
9. Which of the following diatomic molecular species has only π bonds according to Molecular Orbital Theory :
(1) O_{2}
(2) N_{2}
(3) C_{2}
(4) Be_{2}
(3)
[NCERT XI-I-126]
Double bond in C_{2} conssist of both pi-bonds because of presence of four electrons in two pimolecules orbitals.
10. Which of the following reactions are disproportionation reaction :
(1) $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}^{0}$
(2) $3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $2 \mathrm{KMnO}_{4} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(4) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+23 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{+}$
(1)
[NCERT XI-II-264]
Only (1) and (2) are disproroonation as same atoms gets oxidised and reduced.
11. Among the following, the narrow spectrum antibiotic is:
(1) penicillin G
(2) ampicillin
(3) amoxycillin
(4) chloramphenicol
(1)
[NCERT XII-II-455, NCERT line]
The narrow spectrum antibiotic is penicillin G.
12. The correct order of the basic strength of methyl substituted amines in aqueous solution is :
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(1)
[NCERT XII-II-399, NCERT Example]
Basic strength of methyl substituted amines in aq. solution is

$$
\begin{array}{ccc}
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \\
2^{0} & 1^{0} & 3^{0}
\end{array}
$$

13. Which mixture of the solutions will lead to the formation of negatively charged colloidal [Agl]l- sol. :
(1) 50 k mL of $1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 1.5 M KI
(2) 50 k mL of $1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 2 M KI
(3) 50 kmL of $2 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 1.5 M KI
(4) 50 kmL of $0.1 \mathrm{M} \mathrm{AgNO}_{3}+50 \mathrm{~mL}$ of 0.1 M KI
$(1,2)$
[NCERT XII-I-141]
Meq. of $\mathrm{KI}>$ Meq. of AgNO_{3}
14. Conjugate base for Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are :
(1) OH^{-}and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}, respectively
(3) OH^{-}and F^{-}, respectively
(4) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$, respectively
(3)
[NCERT XI-I-206]

15. Which will make basic buffer :
(1) 50 mL of $0.1 \mathrm{M} \mathrm{NaOH}+25$ of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(2) 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+100 \mathrm{~mL}$ of 0.1 M NaOH
(3) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
(4) 100 mL of $0.1 \mathrm{M} \mathrm{HCl}+100 \mathrm{~mL}$ of 0.1 M NaOH
(3)
[NCERT XI-I-219]
Mixture of weak base and its salt with strong acid forms basic buffers.
16. The compound that is most difficult to protonate is:
(1)

(2)

(3)

(4)

(4)
[NCERT XII-II-344, Mod. NCERT]
More difficult to protonate is $\mathrm{Ph}-\mathrm{O}-\mathrm{H}$ (Phenol) due to resonance.
17. The most suitable reagent for the following conversion, is:

(1) Na / liquid NH_{3}
(2) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, quinoline
(3) $\mathrm{Zn} / \mathrm{HCl}$
(4) $\mathrm{Hg}^{2+} / \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$
(2)
[NCERT XI-II-379, Prep. of Alkene]

Reagent is $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ quinoline (Lindlar's catalyst)
18. Which of the following species is stable :
(1) $\left[\mathrm{SiF}_{6}\right]^{2-}$
(2) $\left[\mathrm{GeCl}_{6}\right]^{2-}$
(3) $\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]^{2-}$
(4) $\left[\mathrm{SiCl}_{6}\right]^{2-}$
(4)
[NCERT XI-II-317]
Due to steric hindrance of bulky OH group present. and interaction between lone pair of chloride ion and Si^{4+} is not very strong.
19. Which of the following is an amphoteric hydroxide :
(1) $\mathrm{Sr}(\mathrm{OH})_{2}$
(2) $\mathrm{Ca}(\mathrm{OH})_{2}$
(3) $\mathrm{Mg}(\mathrm{OH})_{2}$
(4) $\mathrm{Be}(\mathrm{OH})_{2}$
(4)
[NCERT XI-II-301]
$\mathrm{Be}(\mathrm{OH})_{2}$ is an amphoteric hydroxide
20. The structure of intermediate A in the following reaction, is :

(1)

(2)

(3)

(4)

(2) [NCERT XII-II-332, Point No. 4 from (cumene)]

Cumene hypoperoxide
21. The manganate and permanganate ions are tetrahedral, due to:
(1) The π-bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
(2) There is no π-bonding
(3) The π-bonding involves overlap of p-orbitals of oxygen with p -orbitals of manganese
(4) The π-bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese
(1)
[NCERT XII-I-226]
It is a fact.
22. For the second period elements the correct increasing order of first ionisation enthalpy is :
(1) $\mathrm{Li}>\mathrm{Be}>\mathrm{B}>\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
(2) $\mathrm{Li}<\mathrm{Be}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
(3) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{Ne}$
(4) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}<\mathrm{Ne}$
(2)
[NCERT XI-I-93]
I.E. of group $2>$ group 13 and group $15>$ group 16 due to extra stable configuration
23. If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by :
(1) $t=0.693 / k$
(2) $\mathrm{t}=6.909 / \mathrm{k}$
(3) $\mathrm{t}=4.606 / \mathrm{k}$
(4) $t=2.303 / k$
(3)
[NCERT XII-I-104]
$t=\frac{2.303}{K} \log \frac{a}{a-x}$
$t=\frac{2.303}{K} \log \frac{100}{100-99}$
$t=\frac{4.606}{K}$
24. Identify the incorrect statement related to PCl_{5} from the following :
(1) Three equatiorial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 120° with each other.
(2) Two axial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of 180° with each other
(3) Axial $\mathrm{P}-\mathrm{Cl}$ bonds are longer than equatorial $\mathrm{P}-\mathrm{Cl}$ bonds.
(4) PCl_{5} molecule is non-reactive
(4)
[NCERT XI-I-58]
$\mathrm{PCl}_{5} \mathrm{I}$ easily dissociates into PCl_{3} and Cl_{2} due to weakes axial bonds.
25. $4 d, 5 p, 5 f$ and $6 p$ orbitals are arranged in the order of decreasing energy. The correct option is:
(1) $5 f>6 p>5 p>4 d$
(2) $6 p>5 f>5 p>4 d$
(3) $6 p>5 f>4 d>5 p$
(4) $5 f 6 p>4 d>5 p$
(1)
[NCERT XII-I-105]
Energy $\propto(n+1)$ value.
if $(\mathrm{n}+\mathrm{l})$ value is same then energy $\propto \mathrm{n}$
26. The biodegradable polymer is :
(1) nylon-6,6
(2) nylon 2-nylon 6
(3) nylon-6
(4) Buna-S
(2)
[NCERT XII-II-444, Point No. 2]
The biodegradable polymer is nylon 2-nylon 6.
27. Match the Xenon compounds in Column - I with its structure in Column - II and assign the correct code

Column-I
(a) XeF_{4}
(b) XeF_{6}
(c) XeOF_{4}
(d) XeO_{3}
(1) a-i, b-ii, c-iii, d-iv
(2) a-ii, b-iii, c-iv, d-i
(3) a-ii, b-iii, c-i, d-iv
(4) a-iii, b-iv, c-i, d-ii
(2)
[NCERT XII-I-205]
$\mathrm{XeF}_{4} \rightarrow$ Hybridisation $=6$
$\left(\mathrm{sp}^{3} \mathrm{~d}^{2}\right)$ with 2 lone pair
$\mathrm{XeF}_{6} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{3}$ with 1 lone pair
\rightarrow distorted octahedral
$\mathrm{XeOF}_{4} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$ with 1 lone pair
\rightarrow square pyramidal
$\mathrm{XeO}_{3} \rightarrow \mathrm{sp}^{3}$ with 1 lone pair
\rightarrow pyramidal
(4)

(1)
[NCERT XI-II-265]

30. An alkene " A " on reaction with O_{3} and $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ gives propanone and ethanal in equimolar ratio. Addition of HCl to alkene " A " gives " B "as the major product. The structure of product " B " is:

(2)

(3)

(4)

(3)
[NCERT XI-II-383]

(A)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3} \xrightarrow{\mathrm{HCl}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{Cl})-\mathrm{CH}_{2} \mathrm{CH}_{3}$
(B) (major)

$$
\begin{aligned}
& +\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}(\mathrm{Cl})-\mathrm{CH}_{3} \\
& \text { (minor) }
\end{aligned}
$$

31. Enzymes that utilize ATP in phosphate transfer require an alkaline eartli metal (M) as the cofactor. M is :
(1) Be
(2) Mg
(3) Ca
(4) Sr
(2)
[NCERT XI-II-304]
32. Which one is malachite from the following
(1) CuFeS_{2}
(2) $\mathrm{Cu}(\mathrm{OH})_{2}$
(3) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(4) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
(4)
[NCERT XII-I-148]
33. Which of the following series oftransitions in the spectrum of hydrogen atom falls in visible region?
(1) Lyman series
(2) Balmer series
(3) Paschen series
(4) Brackett series
(2)
[NCERT XI-I-42]
Only Balmer series lies in visible region.
34. The mixture that forms maximum boiling azeotrope is
(1) Water + Nitric acid
(2) Ethanol + Water
(3) Acetone+Carbon disulphide
(4) Heptane +Octane
(1)
[NCERT XI-I-46]
35. For the cell reaction
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
$\mathrm{E}^{\circ}{ }_{\text {cell }}=0.24 \mathrm{~V}$ at 298 K The standard Gibbs energy
($\Delta \mathrm{G}^{-}$) of the cell reaction is:
[Given that Faraday constant $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$]
(1) $-46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $-23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $46.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $23.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(1)
[NCERT XII-I-72]
Use the reaction
$\Delta G^{\circ}=-n F E^{\circ}$ ($\mathrm{n}=2$)
36. In which case change in entropy is negative :
(1) Evaporation of water
(2) Expansionof a gas at constant temperature
(3) Subli8mation of solid to gas
(4) $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
(4)
[NCERT XI-I-175]
37. Match the following:
a. Pure nitrogen
i. Chlorine
b. Haber proces
c. Contact proces
d. Deacon's proces
ii. Sulphuric acid
iii. Ammonia
iv. Sodium azide or Barium azide

Which of the following is the correct option?
(1) $a-i, b-i i, ~ c-i i i, ~ d-i v$
(2) a-ii, b-iv, c-i, d-iii
(3) a-iii, b-iv, c-ii, d-i
(4) a-iv, b-iii, c-ii, d-i
(4)
[NCERT XII--170] It is a fact.
38. Which of the following is incorrect statement:
(1) PbF_{4} is covalent in nature
(2) SiCl_{4} is easily hydrolysed
(3) $\mathrm{GeX}_{4}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ is more stable than GeX_{2}
(4) SnF_{4} is ionic in nature
(1)
[NCERT XI-II-316]
SnF_{4} and PbF_{4} are ionic in nature.
39. The non-essential amino acid among the following is :
(1) valine
(2) leucine
(3) alanine
(4) lysine
(3)
[NCERT XII-II-420, Amino acid table]
Non essential amiono acid is alanine.
40. A gas at 350 K and 15 bar has molar volume 20 percent smaller than that for an ideal gas under the same conditions. The correct option about the gas and its compressibility factor (Z) is :
(1) $Z>1$ and attractive forces are dominant
(2) $Z>1$ and repulsive forces are dominant
(3) $\mathrm{Z}<1$ and attractive forces are dominant
(4) $Z<1$ and repulsive forces are dominant
(3)
[NCERT XI-I-144]
$Z<1$ attractive forces are dominant.
(non-ideal gas with negative deviation)
41. Among the following, the reaction that proceeds through an electrophilic substitution, is :
(1)

(2)

(3)

(4)

(2) [NCERT XII-II-296, Prep. of Helloarenes]

electrophilic substitution reaction.
42. The major product of the followingreaction is :

(1)

(2)

(3)

(4)

(2)

Reg. No. 2149
46. In which of the following processes, heat is neither absorbed nor released by a system?
(1) isothermal
(2) adiabatic
(3) isobaric
(4) isochoric
(2)
[NCERT-307]
$d Q=0$
in adiabatic process.
47. Increase in temperature of a gas filled in a container would lead to :
(1) increase in its mass
(2) increase in its kinetic energy
(3) decrease in its pressure
(4) decrease in intermolecular distance
(2)
[NCERT-321]
increase in its kinetic energy.
48. The total energy of an electron in an atom in an orbit is -3.4 eV . Its kinetic and potential energies are, respectively:
(1) $-3.4 \mathrm{eV},-3.4 \mathrm{eV}$
(2) $-3.4 \mathrm{eV},-6.8 \mathrm{eV}$
(3) $3.4 \mathrm{eV},-6.8 \mathrm{eV}$
(4) $3.4 \mathrm{eV}, 3.4 \mathrm{eV}$
(3)
[NCERT-435]
$K . E=3.4$

$$
\because|T . E|=|K . E|
$$

T.E. = K.E. + P.E
$-3.4-3.4=$ P.E.
$-6.8=$ P.E.
49.

The correct Boolean operation represented by the circuit diagram drawn is:
(1) AND
(2) $O R$
(3) NAND
(4) NOR
(3)
[NCERT-511] NAND.
50. A block of mass 10 kg is in contact against the inner wall of a hollow cylindrical drum of radius 1 m . The coefficient of friction between the block and the inner wall of the cylinder is 0.1 . The minimum angular velocity needed for the cylinder to keep the block stationary when the cylinder is vertical and rotating about its axis, will be : $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) $\sqrt{10} \mathrm{rad} / \mathrm{s}$
(2) $\frac{10}{2 \pi} \mathrm{rad} / \mathrm{s}$
(3) $10 \mathrm{rad} / \mathrm{s}$
(4) $10 \pi \mathrm{rad} / \mathrm{s}$
(3)
[NCERT-105]

$$
\begin{aligned}
& \hline f>m g \\
& \mu \mathrm{~N}>\mathrm{mg} \\
& \mu \mathrm{mr} \omega^{2}>\mathrm{mg} \\
& \mu \mathrm{r} \omega^{2}=\mathrm{g} \\
& \omega=\sqrt{\frac{\mathrm{g}}{\mu r}} \Rightarrow \sqrt{\frac{10 . . .(i)}{0.1 \times 1}} \\
& \omega=10 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

51. Body A of mass 4 m moving with speed u collides with another body B of mass 2 m , at rest. The collision is head on and elastic in nature. After the collision the fraction of energy lost by the colliding body A is :
(1) $1 / 9$
(2) $8 / 9$
(3) $4 / 9$
(4) $5 / 9$
(2)
[NCERT-129]

$$
\begin{aligned}
& \frac{\Delta \mathrm{K}}{\mathrm{~K}}=\frac{4 \mathrm{~m}_{1} \mathrm{~m}_{2}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)^{2}} \\
& =\frac{4 \times 4 \mathrm{~m} \times 2 \mathrm{~m}}{(4 \mathrm{~m}+2 \mathrm{~m})^{2}}=\frac{8}{9} .
\end{aligned}
$$

52. The speed of a swimmer in still water is $20 \mathrm{~m} / \mathrm{s}$. The speed of river water is $10 \mathrm{~m} / \mathrm{s}$ and is flowing due east. Ifhe is standing on the south bank and wishes to cross the river along the shortest path, the angle at which he should make his strokes w.r.t. north is given by:
(1) 30° west
(2) 0°
(3) 60° west
(4) 45° west
(1)
[NCERT-76]

$$
\sin \alpha=\frac{V_{r}}{V_{m}}=\frac{1}{2}
$$

$$
\alpha=30^{\circ}
$$

53. A mass m is attached to a thin wire and whirled in a vertical circle. The wire is most likely to break when:
(2) the wire is horizontal
(3) the mass is at the lowest point
(4) inclined at an angle of 60° from vertical
(3)
[NCERT-81] the mass is at the lowest point.
54. The displacement of a particle executing simple harmonic motion is given by
$y=A_{0}+A \sin \omega t+B \cos \omega t$
Then the amplitude of its oscillation is given by :
(1) $A_{0}+\sqrt{A^{2}+B^{2}}$
(2) $\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}$
(3) $\sqrt{A_{0}^{2}+(A+B)^{2}}$
(4) $A+B$
(2)
[NCERT-344]

$$
y=A_{0}+A \sin \omega t+B \cos \omega t
$$

$$
A_{\text {net }}=\sqrt{A^{2}+B^{2}+2 A B \cos 90^{\circ}}
$$

$$
=\sqrt{A^{2}+B^{2}}
$$

55. A 800 turn coil of effective area $0.05 \mathrm{~m}^{2}$ is kept perpendicular to a magnetic field $5 \times 10^{-5} \mathrm{~T}$. When the plane ofthe coil is rotated-by 90° around any of its coplanar axis in 0.1 s , the emf induced in the coil will be:
(1) 2 V
(2) 0.2 V
(3) $2 \times 10^{-3} \mathrm{~V}$
(4) 0.02 V
(4)
[NCERT-209]
number of turns $(N)=800, A=0.05 \mathrm{~m}^{2}, \theta=0$, $\mathrm{B}=5 \times 10^{-5} \mathrm{~T}, \Delta \mathrm{~T}=0.1$
$\mathrm{dB}=\mathrm{B}_{2}-\mathrm{B}_{1}=0.5 \times 10^{-5}$
$e=-N A \frac{d B}{d t} \Rightarrow \frac{800 \times 0.05 \times 5 \times 10^{-5}}{0.1}$ $=0.02 \mathrm{~V}$.
56. Average velocity of a particle executing SHM in one complete vibration is :
(1) $\frac{A \omega}{2}$
(2) $\mathrm{A} \omega$
(1) the mass is at the highest point
(3) $\frac{A \omega^{2}}{2}$
(4) zero
(4)

$$
\begin{aligned}
& V_{\text {average }}=\text { Area of }(I+I I+I I I) \\
& V_{\text {average }}=0
\end{aligned}
$$

[NCERT-346]
57. A soap bubble, having radius of 1 mm , is blown from a detergent solution having a surface tension of $2.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$. The pressure inside the bubble equals at a point Z_{0} below the free surface of water in a container. Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$, density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, the value of Z_{0} is:
(1) 100 cm
(2) 10 cm
(3) 1 cm
(4) 0.5 cm
(3)
[NCERT-264]

$$
\begin{aligned}
\mathrm{R} & =1 \mathrm{~mm} \\
\mathrm{~T} & =2.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

$$
\Delta \mathrm{P}=\frac{4 \mathrm{~T}}{\mathrm{R}}
$$

$$
=\frac{4 \times 2.5 \times 10^{-2}}{1 \times 10^{-3}}=100 \mathrm{~N} / \mathrm{m}^{2}
$$

$$
P_{i}-P_{0}=100 \mathrm{~N} / \mathrm{m}^{2} .
$$

$$
\rho g Z_{0}=10^{2}
$$

$$
z_{0}=\frac{100}{10^{4}} \Rightarrow 1 \mathrm{~cm}
$$

58. A copper rod of 88 em and an aluminium rod of unknown length have their increase in length independent of increase in temperature. The length of aluminium rod is : $\left(\alpha_{\mathrm{Cu}}=1.7 \times 10^{-5} \mathrm{~K}^{-1}\right.$ and $\left.\alpha_{\mathrm{AI}}=2.2 \times 10^{-5} \mathrm{~K}^{-1}\right)$:
(1) 6.8 cm
(2) 113.9 cm
(3) 88 cm
(4) 68 cm
(4)

$$
\begin{aligned}
& I_{\mathrm{Cu}} \alpha_{\mathrm{Cu}}=\mathrm{I}_{\mathrm{Al}} \alpha_{\mathrm{Al}} \\
& \mathrm{I}_{\mathrm{Al}}=\frac{\mathrm{I}_{\mathrm{Cu}} \alpha_{\mathrm{Cu}}}{\alpha_{\mathrm{Al}}}
\end{aligned}
$$

$$
=\frac{1.7 \times 10^{-5} \times 88 \times 10^{-2}}{2.2 \times 10^{-5}}=68 \mathrm{~cm}
$$

59. The unit of thermal conductivity is:
(1) $\mathrm{Jm} \mathrm{K}^{-1}$
(2) $\mathrm{Jm}^{-1} \mathrm{~K}^{-1}$
(3) $\mathrm{W} \mathrm{m} \mathrm{K}^{-1}$
(4) $\mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}$
(4)
[NCERT-287]

$$
\begin{aligned}
& H=-k A \frac{d Q}{d x} \\
& \frac{\text { watt }}{\mathrm{m}-\text { Kelvin }}=K \\
& \text { unit of } \mathrm{K}=\text { watt }-\mathrm{m}^{-1} \mathrm{~K}^{-1} .
\end{aligned}
$$

60. When a block of mass M is suspended by a long wire of length L, the length of the wire becomes $(L+\ell)$. The elastic potential energy stored in the extended wire is:
(1) $\mathrm{Mg} \ell$
(2) MgL
(3) $1 / 2 \mathrm{Mg} \ell$
(4) $1 / 2 \mathrm{MgL}$
(3)
[NCERT-235]
Given $\Delta \ell=\ell$
$P E=1 / 2 M g \ell$
61. A disc of radius 2 m and mass 100 kg rolls on a horizontal floor. Its centre of mass has speed of $20 \mathrm{~cm} / \mathrm{s}$. How much work is needed to stop it?
(1) 3 kJ
(2) 30 kJ
(3) 2 J
(4) 1 J
(1)
[NCERT-161]
We have to apply equal energy (rolling) in opposite direction.
$\left.W=\frac{1}{2} m v^{2}+\frac{1}{2} \right\rvert\, \omega^{2}$
$W=\frac{1}{2} m v^{2}+\frac{1}{2} M R^{2} \omega^{2}$
$=\frac{1}{2} m v^{2}\left(1+\frac{\mathrm{l}}{\mathrm{MR}^{2}}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \times 100 \times(0.2)^{2}\left(1+\frac{\frac{1}{2} \mathrm{MR}^{2}}{\mathrm{MR}^{2}}\right) \\
& =3 \mathrm{~J} .
\end{aligned}
$$

62. In an experiment, the percentage of error occurred Ain the measurement of physical quantities $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and Dare $1 \%, 2 \%, 3 \%$ and 4% respectively. Then the maximum percentage of error in the measurement X , when $X=\frac{A^{2} B^{1 / 2}}{C^{1 / 3} D^{3}}$, will be :
(1) $\left(\frac{3}{13}\right) \%$
(2) 16%
(3) -10%
(4) 10%.
(2)
[NCERT-29]

$$
\begin{aligned}
& \frac{\Delta \mathrm{x}}{\mathrm{X}} \times 100=\left(2 \frac{\Delta \mathrm{~A}}{\mathrm{~A}}+\frac{1}{2} \frac{\Delta \mathrm{~B}}{\mathrm{~B}}+\frac{1}{3} \frac{\Delta \mathrm{C}}{\mathrm{C}}+3 \frac{\Delta \mathrm{D}}{\mathrm{D}}\right) \times 100 \\
& =\left(2 \times 1.1 \%+\frac{1}{2} \times 2 \%+\frac{1}{3} \times 3 \%+3 \times 4 \%\right) \\
& =2 \%+1 \%+1 \%+12 \% \\
& =16 \% .
\end{aligned}
$$

63. A body weighs 200 N on the surface of the earth. How much will it weigh half way down to the centre of the earth?
(1) 150 N
(2) 200 N
(3) 250 N
(4) 100 N
(4)
[NCERT-193]

$$
\begin{aligned}
& \mathrm{mg}^{\prime}=m g\left(1-\frac{h}{d}\right) \\
& \mathrm{mg}^{\prime}=m g\left(1-\frac{\mathrm{d} / 2}{\mathrm{~d}}\right) \\
& \mathrm{mg}^{\prime}=\frac{200}{2} \Rightarrow \mathrm{mg}^{\prime}=100 \mathrm{~N}
\end{aligned}
$$

64. Which colour of the light has the longest wavelength?
(1) red
(2) blue
(3) green
(4) violet
(1)
[NCERT-333]
The light has the longest wavelength is red colour.
65. A solid cylinder of mass 2 kg and radius 4 cm is rotating about its axis at the rate of 3 rpm . The torque required to stop after 2π revolutions is :
(1) $2 \times 10^{-6} \mathrm{Nm}$
(2) $2 \times 10^{-3} \mathrm{~N} \mathrm{~m}$
(3) $2 \times 10^{-4} \mathrm{~N} \mathrm{~m}$
(4) $2 \times 10^{6} \mathrm{~N} \mathrm{~m}$
(1)
[NCERT-165]

$$
\begin{aligned}
& \omega^{2}=\omega_{0}^{2}-2 \alpha \theta \\
& \omega_{0}^{2}=2 \alpha \theta \\
& (2 \pi f)^{2}=2 \alpha \theta \\
& 4 \pi^{2}\left(\frac{1}{20}\right)^{2}=2 \alpha \times 2 \pi \times 2 \pi \\
& \alpha=\frac{1}{800} \\
& \tau=\frac{1}{2} \times 2 \times 16 \times 10^{-4} \times \frac{1}{800} \\
& \tau=2 \times 10^{-6} \mathrm{~N} \mathrm{~m} .
\end{aligned}
$$

66. The radius of circle, the period ofrevolution, initial position and sense of revolution are indicated in the fig.

y - projection of the radius vector ofrotating particle P is:
(1) $y(t)=-3 \cos 2 \pi t$, where y in m
(2) $y(t)=4 \sin \left(\frac{\pi t}{2}\right)$, where y in m
(3) $y(t)=3 \cos \left(\frac{3 \pi t}{2}\right)$, where y in m
(4)

$$
\begin{aligned}
& y=A \cos (\omega t+\phi) \\
& y=3 \cos \left(\frac{2 \pi}{4} \times t+0\right) \\
& y=3 \cos \left(\frac{2 \pi t}{4}\right) \\
& y=3 \cos \left(\frac{\pi t}{2}\right)
\end{aligned}
$$

67. A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the centre:
(1) increases as r increases for $r<R$ and for $r>R$
(2) zero as r increases for $r<R$, decreases as r increases for $r>R$
(3) zero as r increases for $r<R$, increases as r increases for $r>R$
(4) decreases as r increases for $r<R$ and for $r>R$
(2)
[NCERT-38]

Inside hollow sphere E = 0
$r<R, E=0$
$\&$ for $r>R, E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$
So, E decreases.
68. In which of the following devices, the eddy current effect is not used:
(1) induction furnace
(2) magnetic braking in train
(3) electromagnet
(4) electric heater
(4)
[NCERT-218]
Electric heater is the devices, the eddy current effect is not used.
69. Six similar bulbs are connected as shown in the figure with a DC source of emf E, and zero internal resistance.
The ratio of power consumption by the bulbs when (i) all are glowing and (ii) in the situation when two from section A and one from section B are glowing, will be :

(1) $4: 9$
(2) $9: 4$
(3) $1: 2$
(4) $2: 1$
(2)
[NCERT-106]
When all are glowing
then, $R_{e q}=\frac{2 R}{3}$
So, $P_{1}=\frac{3 E^{2}}{2 R}$
In second situation
$R_{\text {eq }}=\frac{R}{2}+R=\frac{3}{2} R$

So, $P_{2}=\frac{2 E^{2}}{3 R}$
So, $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{3}{2} \times \frac{3}{2}=\frac{9}{4}$
70. At a point A on the earth's surface the angle of dip, $\delta=+25^{\circ}$. At a point B on the earth's surface the angle of dip, $\delta=-25^{\circ}$. We can interpret that :
(1) A an B are both located in the northern hemisphere
(2) A is located in the southern hemisphere and B is located in the northern hemisphere.
(3) A is located in the northern hemisphere and B is located in the southern hemisphere
(4) A and B are both located in the southern hemisphere.
A is located in the southern hemisphere and B is located in the northern hemisphere.
71. A force $\mathrm{F}=20+10 \mathrm{y}$ acts on a particle in y -direction where F is in newton and y in meter. Work done by the force to move the particle from $y=0$ to $y=1 \mathrm{~m}$ is :
(1) 30 J
(2) 5 J
(3) 25 J
(4) 20 J
(3)
[NCERT-133]

$$
\begin{aligned}
& W=\int_{y_{1}}^{y_{2}} F y d y=\int_{0}^{1}(20+10 y) d y \\
& W=20 \int_{0}^{1} d y+10 \int_{0}^{1} y d y \\
& W=20[y]_{0}^{1}+10\left[\frac{y^{2}}{2}\right]_{0}^{1} \\
& W=20[1]+10\left[\frac{1}{2}\right] \\
& W=20+5=25 \mathrm{~J} .
\end{aligned}
$$

72. Pick the wrong answer in the context with rainbow :
(1) When the light rays undergo two internal reflections in a water drop, a secondary rainbow is formed.
(2) The order of colours is reversed in the secondary rainbow.
(3) An observer can see a rainbow when his front is towards the sun.
(4) Rainbow is a combined effect of dispersion, refraction and reflection of sunlight.
(3)
[NCERT-333]
An observer can see a rainbow when his front is towards the sun.
73. A cylindrical conductor of radius R is carrying a constant current. The plot of the magnitude of the magnetic field, B with the distance, d , from the centre of the conductor, is correctly represented by the figure :
(1)

(2)

(3)

(3)

Inside the cylinder
$B=\frac{\mu_{0}}{2 \pi} \frac{\text { ir }}{R^{2}} \Rightarrow B \propto r$
Outside the cylinder
$B=\frac{\mu_{0}}{2 \pi} \frac{i}{r} \Rightarrow B \propto \frac{1}{r}$
So, option (3) is correct.
74. Two particles A and B are moving in uniform circular motion in concentric circles of radii r_{A} and r_{B} with speed v_{A} and v_{B} respectively. Their time period of rotation is the same. The ratio of angular speed of A to that of B will be :
(1) $r_{A}: r_{B}$
(2) $v_{A}: v_{B}$
(3) $r_{B}: r_{A}$
(4) $1: 1$
(4)
[NCERT-81] Because $\omega=2 \pi / \mathrm{T}$

$$
\frac{\omega_{\mathrm{A}}}{\omega_{\mathrm{B}}}=1: 1 \quad \because \mathrm{~T} \text { is same }
$$

75. Two similar thin equi-convex lenses, of focal length f each, are kept coaxially in contact with each other such that the focal length of the combination is F_{1}. When the space between the two lenses is filled with glycerin (which has the same refractive index ($\mu=1.5$) as that of glass) then the equivalent focal length is F_{2}. The ratio $F_{1}: F_{2}$ will be :
(1) $2: 1$
(2) $1: 2$
(3) $2: 3$
(4) $3: 4$
(2)

$$
\begin{aligned}
& \frac{1}{F_{1}}=\frac{1}{f_{1}}+\frac{1}{f_{2}} \\
& F_{1}=\frac{f}{2} \\
& \frac{1}{F_{2}}=\frac{1}{f}+\frac{1}{f}-\frac{1}{f} \\
& F_{2}=f \\
& \frac{F_{1}}{F_{2}}=\frac{1}{2}
\end{aligned}
$$

76. In total internal reflection when the angle of incidence is equal to the critical angle for the pair of media in contact, what will be angle of refraction?
(1) 180°
(2) 0°
(3) equalt to angle of incidence
(4) 90°.
(4)
[NCERT-321]

$$
\begin{aligned}
& i=C \text { is given } \\
& \mu \sin i=1 \sin r \\
& \sin C=\frac{1}{\mu}
\end{aligned}
$$

$$
r=90^{\circ} .
$$

77. Two parallel infinite line charges with linear charge densities $+\lambda \mathrm{C} / \mathrm{m}$ and $-\lambda \mathrm{C} / \mathrm{m}$ are placed at a distance of $2 R$ in free space. What is the electric field mid-way between the two line charges?
(1) zero
(2) $\frac{2 \lambda}{\pi \epsilon_{0} R} N / C$
(3) $\frac{\lambda}{\pi \epsilon_{0} R} N / C$
(4) $\frac{\lambda}{2 \pi \epsilon_{0} R} N / C$
(3)
[NCERT-37]

At PE due to Ist wire
$\mathrm{E}_{1}=\frac{\lambda}{2 \pi \varepsilon_{0} r}$ away (towards right)
E due to 2nd wire
$\mathrm{E}_{2}=\frac{\lambda}{2 \pi \varepsilon_{0} r}$ (towards right)
So, $E=E_{1}+E_{2}=\frac{\lambda}{\pi \varepsilon_{0} r}$
78. For a p-type semiconductor, which ofthe following statements is true?
(1) Electrons are the majority carriers and trivalent atoms are the dopants.
(2) Holes are the majority carriers and trivalent atoms are the dopants.
(3) Holes are the majority carriers and pentavalent atoms are the dopants.
(4) Electrons are the majority carriers and pentavalent atoms are the dopants.
(2)
[NCERT-477]
Holes are the majority carriers and trivalent atoms are the dopants.
79. Which of the following acts as a circuit protection device:
(1) conductor
(2) inductor
(3) switch
(4) fuse
(4)
[NCERT-105]
Fuse act as circuit protection device.
80. A parallel plate capacitor of capacitance $20 \mu \mathrm{~F}$ is being charged by a voltage source whose potential is changing at.the rate of $3 \mathrm{~V} / \mathrm{s}$. The conduction current through the connecting wires, and the displacement current through the plates of the capacitor, would be, respectively:
(1) zero, $60 \mu \mathrm{~A}$
(2) $60 \mu \mathrm{~A}, 60 \mu \mathrm{~A}$
(3) $60 \mu \mathrm{~A}$, zero
(4) zero, zero.
(2)
[NCERT-273]

$$
\begin{aligned}
& \mathrm{C}=20 \mu \mathrm{~F}, \frac{\mathrm{dV}}{\mathrm{dt}}=3, \mathrm{i}_{\mathrm{c}}=?, \mathrm{i}_{\mathrm{d}}=? \\
& \mathrm{i}_{\mathrm{d}}=\varepsilon_{0} \frac{\mathrm{~d} \phi}{\mathrm{dt}}=\varepsilon_{0} \mathrm{~A} \frac{\mathrm{dE}}{\mathrm{dt}}=\varepsilon_{0} \frac{\mathrm{~A}}{\mathrm{~d}} \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{dV}}{\mathrm{dt}} \\
& \mathrm{i}_{\mathrm{d}}=20 \times 3=60 \mu \mathrm{C}=\mathrm{i}_{\mathrm{c}}
\end{aligned}
$$

At the time of charging $\mathrm{i}_{\mathrm{c}}=\mathrm{i}_{\mathrm{d}}$
So, $i_{c}=60 \mu \mathrm{~A}$.
81. In the circuits shown below, the readings of the voltmeters and the ammeters will be :

(1) $V_{2}>V_{1}$ and $i_{1}=i_{2}$
(2) $V_{2}=V_{1}$ and $i_{1}>i_{2}$
(3) $\mathrm{V}_{2}=\mathrm{V}_{1}$ and $\mathrm{i}_{1}=\mathrm{i}_{2}$
(4) $V_{2}>V_{1}$ and $i_{1}>i_{2}$
(3)
[NCERT-110]

Circuit 1

$\mathrm{i}_{1}=\frac{10}{10}=1 \mathrm{~A}$
$V_{1}=i_{1} R_{1}=1 \times 10=10 \mathrm{~V}$

Circuit 2

As voltmeter is ideal
$\mathrm{i}_{2}=\frac{10}{10}=1 \mathrm{~A}$
$V_{2}=\mathrm{iR}$
$V_{2}=1 \times 10=10 \mathrm{~V}$.
Hence, $\mathrm{V}_{1}=\mathrm{V}_{2}, \mathrm{i}_{2}=\mathrm{i}_{1}$.
82. α-particle consists of:
(1) 2 protons and 2 neutrons only
(2) 2 electrons, 2 protons and 2 neutrons
(3) 2 electrons and 4 protons only
(4) 2 protons only
(1)
[NCERT-449]
2 protons and 2 neutrons only.
83. An electron is accelerated through a potential difference of $10,000 \mathrm{~V}$. Its de Broglie wavelength is, (nearly) : $\left(\mathrm{m}_{\mathrm{e}}=9 \times 10^{-31} \mathrm{~kg}\right)$
(1) $12.2 \times 10^{-13} \mathrm{~m}$
(2) $12.2 \times 10^{-12} \mathrm{~m}$
(3) $12.2 \times 10^{-14} \mathrm{~m}$
(4) 12.2 m
(2)
[NCERT-403]
De Broglie wavelength of electron

$$
\begin{aligned}
& \lambda=\frac{12.27}{\sqrt{V}} \Rightarrow \frac{12.27}{\sqrt{10000}} \AA \\
& =\frac{12.27}{100} \check{A} \\
& =0.1227 \times 10^{-10} \mathrm{~m} \\
& =12.2 \times 10^{-12} \mathrm{~m}
\end{aligned}
$$

84. When an object is shot from the bottom of a long smooth inclined plane kept at an angle 600 with horizontal, it can travel a distance x_{1} along the plane. But when the inclination is decreased to 300 and the same object is shot with the same velocity, it can travel x_{2} distance. Then $\mathrm{x}_{1}: \mathrm{x}_{2}$ will be:
(1) $1: \sqrt{2}$
(2) $\sqrt{2}: 1$
(3) $1: \sqrt{3}$
(4) $1: 2 \sqrt{3}$
(3)
[NCERT-45]

Applying 3rd equation of motion along inclination.

$$
\begin{align*}
& V^{2}=u^{2}+2 a S \\
& (0)^{2}=v^{2}-2 g \sin 60^{\circ} x_{1} \\
& u^{2}=2 g \sin 60 x_{1} \quad(u=\text { constant }) \\
& x_{1} \propto \frac{1}{\sin 60^{\circ}} \quad \ldots \text { (i) } \tag{i}
\end{align*}
$$

similarly for 30° inclination $\mathrm{X}_{2} \propto \frac{1}{\sin 30^{\circ}}$

$$
\begin{align*}
& \frac{x_{1}}{x_{2}}=\frac{\sin 30^{\circ}}{\sin 60^{\circ}}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}} \tag{ii}\\
& x_{1}: x_{2}=1: \sqrt{3}
\end{align*}
$$

85. A small hole of area of cross-section $2 \mathrm{~mm}^{2}$ is present near the bottom of a fully filled open tank of height 2 m . Taking $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, the rate of flow ofwater through the open hole would be nearly:
(1) $12.6 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
(2) $8.9 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
(3) $2.23 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
(4) $6.4 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
(1)
[NCERT-255]

$$
\begin{aligned}
& A=2 \mathrm{~mm}^{2}, g=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~h}=2 \mathrm{~m} \\
& v=\sqrt{2 \mathrm{gh}} \\
& =\sqrt{2 \times 10 \times 2} \\
& \theta=2 \times 10^{-6} \times 2 \sqrt{10} \\
& =12.6 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

86. Two point charges A and B, having charges $+Q$ and - Q respectively, are placed at certain distance apart and force acting between them is F. If 25% charge of A is transferred to B, then force between the charges becomes:
(1) F
(2) $\frac{9 F}{16}$
(3) $\frac{16 \mathrm{~F}}{9}$
(4) $\frac{4 \mathrm{~F}}{3}$
(2)
[NCERT-14]

After transferring 25\% charge

$F^{\prime}=K \frac{\frac{75}{100} \times \frac{75}{100} Q}{r^{2}}$
$F^{\prime}=\frac{9}{16} F$
87. Ionized hydrogen atoms and a-particles with same momenta enters perpendicular to a constant magnetic field, B. The ratio of their radii of their paths $r_{H}: r_{\alpha}$ will be :
(1) $2: 1$
(2) $1: 2$
(3) $4: 1$
(4) $1: 4$
(1)
[NCERT-435]

$$
\begin{aligned}
& r=\frac{P}{q B} \\
& r \propto \frac{1}{q} \Rightarrow \frac{r_{H}}{r_{\alpha}}=\frac{q_{\alpha}}{q_{H}}=\frac{2 q}{q}=\frac{2}{1}
\end{aligned}
$$

88. A particle moving with velocity \vec{V} is acted by three forces shown by the vector triangle PQR. The velocity ofthe particle will :

(1) increase
(2) decrease
(3) remains constant
(4) change according to the smallest force $\overrightarrow{Q R}$
(3)
[NCERT-40]
These are cyclic vectors, hence resultant force is zero.
$\mathrm{F}=0$
$F=m a$
$\therefore \mathrm{ma}=0$
$a=0$
So, V = constant.
89. The work done to raise a mass m from the surface of the earth to a height h, which is equal to the radius of the earth, is :
(1) mgR
(2) 2 mgR
(3) $1 / 2 \mathrm{mgR}$
(4) $3 / 2 \mathrm{mgR}$
(3)
[NCERT-192]

$$
\mathrm{W}=\Delta \mathrm{U} \text { and } \Delta \mathrm{U}=\frac{\mathrm{mgh}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)}
$$

$$
W=\frac{m g R}{\left(1+\frac{R}{R}\right)}
$$

$$
W=\frac{m g R}{2}
$$

90. In a double slit experiment, when light of wavelength 400 nm was used, the angular width of the first minima formed on a screen placed 1 m away, was found to be 0.2°. What will be the angular width of the first minima, if the entire experimental apparatus is immersed in water? $\left(\mu_{\text {water }}=4 / 3\right)$:
(1) 0.266°
(2) 0.15°
(3) 0.05°
(4) 0.1°.
(2)
[NCERT-362]

$$
\begin{aligned}
& \lambda=400 \mathrm{~nm}, \mathrm{D}=1 \mathrm{~m}, \theta=0.2^{\circ} \\
& \beta=\frac{\lambda D}{\mathrm{~d}}, \quad \mu=\frac{\mathrm{C}}{\mathrm{v}} \Rightarrow \mu=\frac{\mathrm{C}}{\mathrm{n} \lambda}
\end{aligned}
$$

Now Light Institure
The Finest Institute For Međical Entrance Exams.
NATIONAL ELIGIBIITY OUMENIRANCE TEST (UG) [NEET-2019], Test held on 05 May 2019 Subject : BIOLOGY
91. Which of the following statements is incorrect
(1) Viroids lack a protein coat
(2) Viruses are obligate parasites
(3) Infective constituent in viruses is the protein coat
(4) Prions consist of abnormally foldedproteins
(3)
[NC--27]
92. Purines found both in DNA and RNA are
(1) Adenine and thymine
(2) Adenine and guanine
(3) Guanine and cytosine
(4) Cytosine and thymine
(2)
[NC-II-96]
93. Which of the following glucose transporters is insulindependent?
(1) GLUTI
(2) GLUT II
(3) GLUT III
(4) GLUTIV
(4)
[NC-I-147]
94. Identify the cellswhose secretion protects the lining of gastro-intestinal tract from various enzymes.
(1) Chief Cells
(2) Goblet Cells
(3) Oxyntic Cells
(4) Duodenal Cells
(2)
[NC-I-262]
95. Which one of the following equipments is essentially required for growing microbes on a large scale, for industrial production of enzyes ?
(1) BOD incubator
(2) Sludge digester
(3) Industrial oven
(4) Bioreactor
(4)
[NC-II-204]
96. Which of the following is true for Golden rice ?
(1) It is Vitamin A enriched, with a gene from daffodil
(2) It is pest resistant, with a gene from Bacillus thuringiensis
(3) It is drought tolerant, developed using Agrobacterium vector
(4) It has yellow grains, because of a gene introduced from a primitive variety of rice
(1)
[NC-II-208]
97. Which one of the following is not a method of in situ conservation of biodiversity?
(1) Biosphere Reserve
(2) Wildlife Sanctuary
(3) Botanical Garden
(4) Sacred Grove
(3)
[NC-II-266, 267]
98. Under which of the following conditions will there be no change in the reading frame of following mRNA?

5'AACAGCGGUGCUAUU3'
(1) Insertion of G at $5^{\text {th }}$ position
(2) Deletion of G from $5^{\text {th }}$ position
(3) Insertion of A and G at $4^{\text {th }}$ and $5^{\text {th }}$ positions respectively
(4) Deletion of GGU from $7^{\text {th }}, 8^{\text {th }}$ and $9^{\text {th }}$ positions
(4)
[NC-II-113]
99. Which of these following methods is the most suitable for disposal of nuclear waste?
(1) Shoot the waste into space
(2) Bury the waste under Antarctic ice - cover
(3) Dump the waste within rocks under deep ocena
(4) Bury the waste within rocks deep below the Earth's surface
(4)
[NC -II-280]
100. Match the following organisms with the products they produce :
(a) Lactobacillus
(b) Saccharomyces cerevisiae
(c) Aspergillus niger
(iii) Citric Acid
(iv) Bread
(v) Acetic acid

Select the correct option
(1) (a)-(ii), (b)-(iv), (c)-(v), (d)-(iii)
(2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(v)
(3) (a)-(iii), (b)-(iv), (c)-(v), (d)-(i)
(4) (a)-(ii), (b)-(i), (c)-(iii), (d)-(v)
(2)
[NC-II-181]
101. What map unit (Centimorgan) is adopted in the construction of geneti maps?
(1) A unit of distance between two expressed genes, representing 10% cross over
(2) A unit of distance between two expressed genes, representing 100% cross over
(3) A unit of distance between genes on chromosomes, representing 1% cross over
(4) A unit of distance between genes on chromosomes, representing 50\% cross over
(3)
[NC-II-83]
102. Select the hormone-releasing Intra - Uterine Devices
(1) Vaults, LNG-20
(2) Multiload 375, Progestasert
(3) Progestasert, LNG-20
(4) Lippes Loop, Multiload 375
(3)
[NC-II-60]
103. Which of the following can be used as a biocontrol agent in the treatment of plant disease ?
(1) Trichoderma
(2) Chlorella
(3) Anabaena
(4) Lactobacillus
(1)
[NC-II-187]
104. Expressed Sequence Tags (ESTs) refers to
(1) Genes expressed as RNA
(2) Polypeptide expression
(3) DNA polymorphism
(4) Novel DNA sequences
(1)
[NC-II-119]
105. Colostrum, the yellowish fluid, secreted by mother during the initial days of lactation is very essential to impart immunity to the newborn infants because it contains
(1) Natural killer cells
(2) Monocytes
(3) Macrophages
(4) Immunoglobulin A
(4)
[NC-II-152]
106. Select the incorrect statement
(1) Inbreeding increases homozygosity
(2) Inbreeding is essential to evolve purelines in any animal
(3) Inbreeding selects harmful recessive genes that reduce fertility and productivity
(4) Inbreeding helps in accumulation of superior genes and elimination of undersirable genes
(3)
[NC-II-167]
107. Select the correct sequence for transport of sperm cells in male reproductive system
(1) Testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Rete testis \rightarrow Inguinal canal \rightarrow Urethra
(2) Seminiferous tubules \rightarrow Rete testis \rightarrow Vasa efferentia \rightarrow Epididymis \rightarrow Vas deferens \rightarrow Epididymis \rightarrow Vas deferens \rightarrow Ejaculatory duct \rightarrow Urethra \rightarrow Urethral meatus
(3) Seminiferous tubules \rightarrow Vasa efferentia \rightarrow Epididymis \rightarrow Inguinal canal \rightarrow Urethra
(4) Testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Vas deferens \rightarrow Ejaculatory duct \rightarrow Inguinal canal \rightarrow Urethra \rightarrow Urethral meatus
(2)
[NC-II-43]
108. A gene locus has two alleles A, a. If the frequency of dominant allele A is 0.4 , then what will be the frequency of homozygous dominant, heterozygous and homozygous recessive individuals in the population?
(1) 0.36 (AA); $0.48(\mathrm{Aa}), 0.16$ (aa)
(2) $0.16(\mathrm{AA}) ; 0.24(\mathrm{Aa}) ; 0.36(\mathrm{aa})$
(3) $0.16(\mathrm{AA}) ; 0.48(\mathrm{Aa}) ; 0.36(\mathrm{aa})$
(4) 0.16 (AA); $0.36(\mathrm{Aa}) ; 0.48(\mathrm{aa})$
(3)
[NC-II-137]
109. Match the following organisms with their respective characteristics
(a) Pila
(i) Flame cells
(b) Bombyx
(ii) Comb plates
(c) Pleurobrachia
(iii) Radula
(d) Taenia
(iv) Malpighian tubules

Select the correct option from the following
(1) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
(2) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(2)
[NC-I-53]
110. The shorter and longer arms of a submetacentric chromosome are referred to as
(1) s-arm and l-arm respectively
(2) p-arm and q-arm respectively
(3) q-arm and p-arm respectively
(4) m-arm and n-arm respectively
(2)
[NC-I-139]
111. What is the site of perception of photoperiod necessary for induction of flowering in plants ?
(1) Lateral buds
(2) Pulvinus
(3) Shoot apex
(4) Leaves
(4)
[NC-I-252]
112. Which part of the brain is responsible for thermoregulation?
(1) Cerebrum
(2) Hypothalamus
(3) Corpus callosum
(4) Medulla oblongata
(2)
113. Which of the following pair of organelles does not contain DNA ?
(1) Mitochondria and Lysosomes
(2) Chloroplast and Vacuoles
(3) Lysosomes and Vacuoles
(4) Nuclear envelope and Mitochondria
(3)
[NC-I-134]
114. What is the genetic disorder in which an individual has an overall masculine development, gynaecomastia, and is sterile ?
(1) Turner's syndrome
(2) Klinefelter's syndrome
(3) Edward syndrome
(4) Down's syndrome
(2)
[NC-II-92]
115. Xylem translocates
(1) Water only
(2) Water and mineral salts only
(3) Water, mineral salts and some organic nitrogen only
(4) Water, mineral salts, some organic nitrogen and hormones
(4)
[NC-I-184]
116. Which of the following pairs of genes is mainly responsible for green house effect?
(1) Ozone and Ammonia
(2) Oxygen and Nitrogen
(3) Nitrogen and Sulphur dioxide
(4) Carbon dioxide and Methane
(4)
[NC-II-281]
117. Which of the following protocols did aim for reducing emission of chlorofluorocarbons into the atmosphere?
(1) Montreal Protocol
(2) Kyoto Protocol
(3) Gothenburg Protocol
(4) Geneva Protocol
(1)
118. In some plants, the female gamete develops into embryo without fertilization. This phenomenon is shown as
(1) Autogamy
(2) Parthenocarpy
(3) Syngamy
(4) Parthenogenesis
(4)
[NC-II-14]
119. Which of the following sexually transmitted diseases is not completely curable ?
(1) Gonorrhoea
(2) Genital warts
(3) Genital herpes
(4) Chlamydiasis
(3)
[NC-II-63]
120. Which of the following immune responses is responsible for rejection of kidney graft ?
(1) Auto-immune response
(2) Humoral immune response
(3) Inflammatory immune response
(4) Cell - mediated immune response
(4)
[NC-II-150, 151]
121. Which of the following factors is responsible for the formation of concentrated urine?
(1) Low levels of antidiuretic hormone
(2) Maintaining hyperosmolarity towards inner medullary interstitium in the kidneys
(3) Secretion of erythropoietin by juxtaglomerular complex
(4) Hydrostatic pressure during glomerular filtration
(2)
[NC-I-297]
122. Which of the following features of genetic code does allow bacteria to produce human insulin by recombinant DNA technology?
(1) Genetic code is not ambiguous
(2) Genetic code is redundant
(3) Genetic code is nearly universal
(4) Genetic code is specific
(3)
123. Which of the following statements is not correct?
(1) Lysosomes have numerous hydrolytic enzymes
(2) The hydrolytic enzymes of lysosomes are active under acidic pH
(3) Lysosomes are membrane bound structures
(4) Lysosomes are formed by the process of packaging in the endoplasmic reticulum
(4)
[NC-I-134]
124. The concept of "Omnis cellula-a cellula" regarding cell division was first proposed by
(1) Rudolf Virchow
(2) Theodore Schwann
(3) Schleiden
(4) Aristotle
(1)
[NC-I-126]
125. Use of an artificial kidney during hemodialysis may result in
(a) Nitrogenous waste build - up in the body
(b) Non-elimination of excess potassium ions
(c) Reduced absorption of calcium ions from gastrointestianl tract
(d) Reduced RBC production
(1) (a) and (b) are correct
(2) (b) and (c) are correct
(3) (c) and (d) are correct
(4) (a) and (d) are correct
(3)
[NC-I-298]
126. What is the direction of movement of sugars in phloem?
(1) Non-multidirectional
(2) Upward
(3) Downward
(4) Bi-directional
(4)
[NC-I-190]
127. Which of the following muscular disorders is inherited?
(1) Tetany
(2) Muscular dystrophy
(3) Myasthenia gravis
(4) Botulism
(2)
[NC-I-312]
128. Consider following features
(a) Organ system level of organisation
(b) Bilateral symmetry
(c) True coelomates with segmentation of body

Select the correct option of animal groups which possess all the above characteristics
(1) Annelida, Arthropoda and Chordata
(2) Annelida, Arthropoda and Mollusca
(3) Arthropoda, Mollusca and Chordata
(4) Annelida, Mollusca and Chordata
(1)
[NC-I-47]
129. The frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes was explained by
(1) T.H. Morgan
(2) Gregor J. Mendel
(3) Alfred Sturtevant
(4) Sutton Boveri
(3)
[NC-II-83]
130. Following statements describe the characteristics of the enzyme Restriction Endonuclease. Identify the incorrect statement
(1) The enzyme cuts DNA molecule at identified position within the DNA
(2) The enzyme binds DNA at specific sites and cuts only one of the two strands
(3) The ezyme cuts the sugar-phosphate backbone at specific sites on each strand
(4) The enzyme recognizes a specific palindromic nucleotide sequence in the DNA
(2)
[NC-II-196]
131. Which of the following statements is incorrect?
(1) Morels and truffles are edible delicacies
(2) Claviceps is a source of many alkaloids and LSD
(3) Conidia are produced exogenously and ascospores endogenously
(4) Yeasts have filamentous bodies with long threadlike hyphae
(4)
[NC-I-24]
132. Placentation, in which ovules develop on the inner wall of the ovary or in peripheral part, is
(1) Basal
(2) Axile
(3) Parietal
(4) Free central
(3)
[NC-I-75]
133. Which of the following is the most important cause for animals and plants being driven to extinction?
(1) Habitat loss and fragmentation
(2) Drought and floods
(3) Economic exploitation
(4) Alien species invasion
(1)
[NC-II-264]
134. Variations caused by mutation, as proposed by Hugo de Vries, are:
(1) Random and directional
(2) Random and directionless
(3) Small and directional
(4) Small and directionless
(2)
[NC-II-136]
135. Respiratory Quotient (RQ) value of tripalmitin is :
(1) 0.9
(2) 0.7
(3) 0.07
(4) 0.09
(2)
[NC-I-137]
136. In Antirrhinum (Snapdragon), a red flower was crossed with a white flower and in F_{1} generation, pink flowers were obtained. When pink flowers were selfed, the F_{2} generation showed white, red and pink flowers. Choose the incorrect statement from the following:
(1) This experiment does not follow the Principle of Dominance.
(2) Pink colour in F_{1} is due to incomplete dominance.
(3) Ratio of F_{2} is $\frac{1}{4}$ (Red) : $\frac{2}{4}$ (Pink) : $\frac{1}{4}$ (White)
(4) Law of Segregation does not apply in this experiment.
(4)
[NC-II-76]
137. Select the incorrect statement :
(1) Male fruit fly is heterogametic.
(2) In male grasshoppers, 50% of sperms have no sexchromosome.
(3) In domesticated fowls, sex of progeny depends on the type of sperm rather than egg.
(4) Human males have one of their sex-chromosome much shorter than the other.
(3)
[NC-II-86]
138. The correct sequence ofphases ofcell cycle is:
(1) $\mathrm{M} \rightarrow \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S}$
(2) $\mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{~S} \rightarrow \mathrm{M}$
(3) $\mathrm{S} \rightarrow \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M}$
(4) $\mathrm{G}_{1} \rightarrow \mathrm{~S} \rightarrow \mathrm{G}_{2} \rightarrow \mathrm{M}$
(4)
[NC-I-163]
139. Thiobacillus is a group of bacteria helpful in carrying out :
(1) Nitrogen fixation.
(2) Chemoautotrophic fixation
(3) Nitrification
(4) Denitrification
(4)
[NC-I-201]
140. Polyblend, a fine powder of recycled modified plastic, has proved to be a good material for :
(1) Making plastic sacks
(2) use as a fertilizer
(3) construction ofroads
(4) making tubes and pipes
(3)
[NC-II-279]
141. From evolutionary point of view, retention of the female gametophyte with developing young embryo on the parent sporophyte for some time, is first observed in :
(1) Liverworts
(2) Mosses
(3) Pteridophytes
(4) Gymnosperms
(3)
[NC-I-38]
142. Select the correct option :
(1) $8^{\text {th }}, 9^{\text {th }}$ and $10^{\text {th }}$ pairs of ribs articulate directly with the sternum.
(2) $11^{\text {th }}$ and $12^{\text {th }}$ pairs ofribs are connected to the sternum with the help of hyaline cartilage.
(3) Each rib is a flat thin bone and all the ribs are connected dorsally to the thoracic vertebrae and ventrally to the sternum.
(4) There are seven pairs of vertebrosternal, three pairs of vertebrochondral and two pairs of vertebral ribs.
(4)
[NC-I-310]
143. Concanavalin A is :
(1) an alkaloid
(2) an essential oil
(3) a lectin
(4) a pigment
(3)
[NC-I-146]
144. Extrusion of second polar body from egg nucleus occurs:
(1) after entry of sperm but before fertilization
(2) after fertilization
(3) before entry of sperm into ovum
(4) simultaneously with first cleavage
(1)
[NC-II-52]
145. Pinus seed cannot germinate and establish without fungal association. This is because:
(1) its embryo is immature.
(2) it has obligate association with mycorrhizae.
(3) it has very hard seed coat.
(4) its seeds contain inhibitors that prevent germination.
(2)
[NC-I-38]
146. The Earth Summit held in Rio de Janeiro in 1992 was called:
(1) to reduce CO_{2} emissions and global warmmg.
(2) for conservation of biodiversity and sustainable utilization ofits benefits.
(3) to assess threat posed to native species by invasive weed species.
(4) for immediate steps to discontinue use of CFCs that were damaging the ozone layer.
(2)
[NC-II-266]
147. DNA precipitation out of a mixture of biomolecules can be achieved by treatment with:
(1) Isopropanol
(2) Chilled ethanol
(3) Methanol at room temperature
(4) Chilled chloroform
(2)
[NC-II-201]
148. Grass leaves curl inwards during very dry weather. Select the most appropriate reason from the following:
(1) Closure of stomata
(2) Flaccidity of bulliform cells
(3) Shrinkage ofair spaces in spongy mesophyll
(4) Tyloses in vessels
(2)
[NC-I-94]
149. Match the following structures with their respective location in organs:
(a) Crypts of Lieberkuhn
(i) Pancreas
(b) Glisson's Capsule
(ii) Duodenum
(c) Islets ofLangerhans
(iii) Small intestine
(d) Brunner's Glands
(iv) Liver

Select the correct option from the following :
(1) a - iii, b-i, c - ii, d - iv
(2) $\mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{iv}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{iii}$
(3) $\mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{iv}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{ii}$
(4) a - iii, b-ii, c-i, d-iv
(3)
[NC-I-260-261]
150. Match the following hormones with the respective disease:
(a) Insulin
(i) Addison's disease
(b) Thyroxin
(ii) Diabetes insipidus
(c) Corticoids
(iii) Acromegaly
(d) Growth Hormo
(iv) Goitre
(v) Diabetes mellitus

Select the correct option
(1) $a-v, b-i, c-i i, d-i i i$
(2) $\mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{iv}, \mathrm{c}-\mathrm{iii}, \mathrm{d}-\mathrm{i}$
(3) $\mathrm{a}-\mathrm{v}, \mathrm{b}-\mathrm{iv}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{iii}$
(4) $a-i i, b-i v, c-i, d-i i i$ (3)
[NC-I-334,336-337]
151. Which of the following contraceptive methods do involve a role of hormone :
(1) Lactational amenorrhea, Pills, Emergency contraceptives
(2) Barrier method, Lactational amenorrhea, Pills
(3) CuT, Pills, Emergency contraceptives
(4) Pills, Emergency contraceptives, Barrier methods
(1)
[NC-II-60-61]
152. Drug called 'Heroin' is synthesized by :
(1) methylation of morphine
(2) acetylation of morphine
(3) glycosylation of morphine
(4) nitration of morphine
(2)
[NC-II-158]
153. In a species, the weight of newborn. ranges from 2 to 5 $\mathrm{kg} .97 \%$ of the newborn mill an average weight etween 3 to 3.3 g survive w ereas 99% of the infants born wilth weights from 2 to 2.5 kg or 4.5 to 5 kg die. Which type of selection process is taking place:
(1) Directional Selection
(2) Stabilizing Selection
(3) Disruptive Selection
(4) Cyclical Selection
(2)
[NC-II-136]
154. Conversion of glucose to glucose-6-phosphate, the first irreversilble reactlon of glycolysis, is catalyzed by:
(1) Aldolase
(2) Hexokinase
(3) Enolase
(4) Phosphofructokinase
(2)
[NC-I-229]
155. Which of the following statements is correct :
(1) Cornea is an external transparent and protective proteinacious covering of the eye-ball.
(2) Cornea consists of dense connective tissue of elastin and can repair itself.
(3) Cornea is convex, transparent layer which is highly vascularised.
(4) Cornea consists of dense matrix of collagen and is the most sensitive portion of the eye.
(4)
[NC-I-323]
156. Which of the following ecological pyramide is generally inverted:
(1) Pyramid of numbers in grassland
(2) Pyramid of energy
(3) Pyramid of biomass in a forest
(4) Pyramid of biomass in a sea
(4)
[NC-II-248]
157. Consider the followingstatements:
(A) Coenzymeor metal ion that is tightly bound to enzyme protein is called prosthetic group.
(B) Acomplete catalytic active enzyme with its bound prosthetic group is called apoenzyme.

Select the correct option.
(1) Both (A) and (B) are true.
(2) (A) is true but (B) is false.
(3) Both (A) and (B) are false.
(4) (A) is false but (B) is true.
(3)
[NC-I-159]
158. Due to increasing air-borne allergens and pollutants, many people in urban areas are suffering from respiratory disorder causing wheezing due to:
(1) benign growth on mucous lining of nasal cavity.
(2) inflammation ofbronchi and bronchioles
(3) proliferation offibrous tissues and damage of the alveolar walls.
(4) reduction in the secretion of surfactants by pneumocytes.
(2)
[NC-I-245]
159. Which one of the following statements regarding postfertilization development in flowering plants is incorrect:
(1) Ovary develops into fruit
(2) Zygote develops into embryo
(3) Central cell develops into endosperm
(4) Ovules develop into embryo sac
(4)
[NC-II-34]
160. Phloem in gymnosperms lacks:
(1) Albuminous cells and sieve cells
(2) Sieve tubes only
(3) Companion cells only
(4) Both sieve tubes and companion cells
161. It takes very long time for pineapple plants to produce flowers. Which combination ofhormones can be applied to artificially induce flowering in pineapple plants throughout the year to increase yield :
(1) Auxin and Ethylene
(2) Gibberellin and Cytokinin
(3) Gibberellin and Abscisic acid
(4) Cytokinin and Abscisic acid
(1)
[NC-I-248, 250]
162. Persistent nucellus in the seed is known as:
(1) Chalaza
(2) Perisperm
(3) Hilum
(4) Tegmen
(2)
[NC-II-36]
163. Cells in G_{o} phase :
(1) exit the cell cycle
(2) enter the cell cycle
(3) suspend the cell cycle
(4) terminate the cell cycle
(1)
[NC-I-164]
164. Match Column -I with Column -II

Column -I
(a) Saprophyte
(b) Parasite
(c) Lichens
(d) Mycorrhiza

Column-II
(i) Symbiotic association of fungi with plant roots
(ii) Decomposition ofdead organic materials
(iii) Living on living plants or animals
(iv) Symbiotic association of algae and fungi

Choose the correct answer from the options given below:
(1) a - i, b - ii, c - iii, d - iv
(2) $\mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{ii}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{iv}$
(3) a - ii, b-i, c-iii, d-iv
(4) $\mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{iii}, \mathrm{c}-\mathrm{iv}, \mathrm{d}-\mathrm{i}$
(4)
[NC-I-26-27]
165. What would be the heart rate of a person if the cardiac output is 5 L , blood volume in the ventricles at the end of diastole is 100 mL and at the end of ventricular systole is 50 mL :
(1) 50 beats per minute
(2) 75 beats per minute
(3) 100 beats per minute
(4) 125 beats per minute
(3)
[NC-I-285]
166. What triggers activation of protoxin to active Bt toxin of Bacillus thuringiensis in boll worm:
(1) Body temperature
(2) Moist surface of midgut
(3) Alkaline pH of gut
(4) Acidic pH of stomach
(3)
[NC-II-208]
167. The ciliated epithelial cells are required to move particles or mucus in a specific diretion. In humans, these cells are mainly present in :
(1) Bile duct and Bronchioles
(2) Fallopian tubes and Pancreatic duct
(3) Eustachian tube and Salivary duct
(4) Bronchioles and Fallopian tubes
(4)
[NC-I-101]
168. Which of the statements given below is not true about formation of Annuale Rings in trees :
(1) Annual ring is a combination of spring world and autumn wood produced in a year
(2) Differential activity of cambium causes light and dark bands of tissue - early and late wood respectively.
(3) Activity of cambium depends upon variation in climate.
(4) Annual rings are not prominent in trees of temperate region.
(4)
[NC-I-96]
169. What is the fate of the male gametes discharged in the synergid :
(1) One fuses with the egg, other(s) degenerate (s) in the synergid
(2) All fuse with the egg
(3) One fuses with the egg, other(s) fuse(s) with synergid nucleus
(4) One fuses with the egg and other fuses with central cell nuclei
(4)
[NC-II-34]
170. Match the following genes of the Lac operon with their respective products :
(a) igene
(i) β-galactosidase
(b) z gene
(ii) Permease
(c) a gene
(iii) Repressor
(d) y gene
(iv) Transacetylase

Select the correct option.
(1) $a-i, b-i i i, c-i i, d-i v$
(2) $a-i i i, b-i, c-i i, d-i v$
(3) $\mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{i}, \mathrm{c}-\mathrm{iv}, \mathrm{d}-\mathrm{ii}$
(4) a - iii, b-iv, c-i, d-ii
(3)
[NC-II-117]
171. Select the correct sequence of organs in the alimentary' canal of cockroach starting from mouth:
(1) Pharynx \rightarrow Oesophagus \rightarrow Crop \rightarrow Gizzard \rightarrow Ileum \rightarrow Colon \rightarrow Rectum
(2) Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Crop \rightarrow lleum \rightarrow Colon \rightarrow Rectum
(3) Pharynx \rightarrow Oesophagus \rightarrow Gizzard \rightarrow Ileum \rightarrow Crop \rightarrow Colon \rightarrow Rectum
(4) Pharynx \rightarrow Oesophagus \rightarrow Ileum \rightarrow Crop \rightarrow Gizzard \rightarrow Colon \rightarrow Rectum
(1)
[NC-I-113]
172. Match the hominids with their correct brain size:
(a) Homo habilis
(i) 900 cc
(b) Homo neanderthalensis
(ii) 1350 cc
(c) Homo erectus
(iii) 650-800 cc
(d) Homo sapiens
(iv) 1400 cc

Select the correct option.
(1) a - iii, b-i, c-iv, d-ii
(2) $\mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{ii}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{iv}$
(3) $\mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{iv}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{ii}$
(4) $\mathrm{a}-\mathrm{iv}, \mathrm{b}-\mathrm{iii}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{ii}$
(3)
[NC-II-140-141]
173. Identify the correct pair representing the causative agent of typhoid fever and the confirmatory test for typhoid.
(1) Plasmodium vivax / UTI test
(2) Streptococcus pneumoniae / Widal test
(3) Salmonella typhi /Anthrone test
(4) Salmonella typhi / Widal test
(4)
[NC-II-146-147]
174. How does steroid hormone influence the cellular activities :
(1) Changing the permeability of the cell membrane.
(2) Binding to DNA and forming a gene-hormone complex
(3) Activating cyclic AMP located on the cell membrane.
(4) Using aquaporin channels as second messenger
(2)
[NC-I-340-341]
175. Tidal Volume and Expiratory Reserve Volume of an athlete is 500 mL and 1000 mL respectively. What will be his Expiratory Capacity if the Residual Volume is 1200 mL :
(1) 1500 mL
(2) 1700 mL
(3) 2200 mL
(4) 2700 mL
(1)
[NC-I-271]
176. Which of the following is a commercial blood cholesterol lowering agent :
(1) Cyclosporin A
(2) Statin
(3) Streptokinase
(4) Lipases
(2)
[NC-II-183]
177. Which of the following statements regarding mitochondria is incorrect :
(1) Outer membrane is permeable to monomers of carbohydrates, fats and proteins.
(2) Enzymes ofelectron transport are embedded in outer membrane
(3) Inner membrane is convoluted with infoldings
(4) Mitochondrial matrix contains single circular DNAmolecule and ribosomes
(2)
[NC-I-136]
178. Match the Column - I with Column -II

Column-I
(a) P -wave
(b) QRS complex
(c) T-wave
(d) Reduction in the size of T - wave
(v) Repolarisation of atria
(1) a-iv, b-i, c-ii, d-iii
(2) $a-i v, b-i, c-i i, d-v$
(3) $\mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{i}, \mathrm{c}-\mathrm{v}, \mathrm{d}-\mathrm{iii}$
(4) $\mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{iii}, \mathrm{c}-\mathrm{v}, \mathrm{d}-\mathrm{iv}$
(1)
[NC-I-286]
179. Select the correct group of biocontrol agents
(1) Bacillus thuringiensis, Tobacco mosaic virus, Aphids
(2) Trichoderma, Baculovirus, Bacillus thuringiensis
(3) Oscillartoria, Rhizobium, Trichoderma
(4) Nostoc, Axospirillium, Nucleopolyhedrovirus
(2)
[NC-II-187]
180. Select the correctly written scientific name of Mang which was first described by Carolus Linnaeus :
(1) Mangifera indica Car Linn
(2) Mangifera indica Linn
(3) Mangifera indica
(4) Mangifera Indica
(2)
[NC-I-07]

