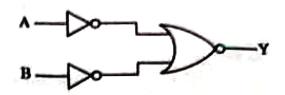


The Finest Institute For Medical Entrance Exams.

NATIONAL ELIGIBILITY CUM ENTRANCE TEST (UG) SET : F4

[NEET-2020], Test held on 13 Sept. 2020 Subject : PHYSICS


1. The quantities of heat required to raise the temperature of two solid copper spheres of radii r_1 and r_2 ($r_1 = 1.5 r_2$) through 1 K are in the ratio:

- (1) 3/2
- (2) 5/3
- (3) 27/8
- (4) 9/4
- 2. Find the torque about the origin when a force of
 - 3j N acts on a particle whose position vector is
 - 2 k̂m.
 - (1) –6îNm
 - (2) 6k[̂]Nm
 - (3) 6îNm
 - (4) 6j Nm
- 3. For transistor action, which of the following statements is correct :
 - (1) Both emitter junction as well as the collector junction are forward biased
 - (2) The base region must be very thin and lightly doped.
 - (3) Base, emitter and collector regions should have same doping concentrations.
 - (4) Base, emitter and collector regions should have same size.
- 4. A ball is thrown vertically downward with a velocity of 20 mls from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height ofthe tower is: (g= 10 m/s²)
 - (1) 320 m(2) 300 m
 - (3) 360 m
 - (4) 340 m

5. The Brewsters angle i_{b} for an interface should be:

(2) i_b = 90°

- (1) 45° < i_b < 90°
- (3) $0^{\circ} < i_{h} < 30^{\circ}$ (4) $30^{\circ} < i_{h} < 45^{\circ}$
- 6. For the logic circuit shown, the truth table is :

	Α	в	Y	
	0	0.	1	
(1)	0	1	1	
	1	0	1	
	Α	В	Y	
	0	0	1	
	0	1	0	
(2)	1	0	0	
	1	1	0	
	Α	в	Y	
	0	0	0	
	0	1	0	
(3)	1	0	0	
	1	1	1	
	Α	В	Y	
	0	0	0	
	0	1	1	
(4) PUR (UI	1	0	1	
	1	1	1	

[NEET-2020 (PHYSICS) : (13-Sept.-2020)]

coefficient of resistance are :

- (1) semiconductors only
- (2) insulators and semiconductors
- (3) metals
- (4) insulators only
- 8. The increase in the width of the depletion region in a p-n junction diode is due to:
 - (1) both forward bias and reverse bias
 - (2) increase in forward current
 - (3) forward bias only
 - (4) reverse bias only
- **Dimensions of stress are** 9.
 - (1) $[ML^{0}T^{-2}]$
 - (2) $[ML^{-1}T^{-2}]$
 - (3) [MLT⁻²]
 - (4) [ML²T⁻²]
- 10. Taking into account of the significant figures, what is the value of 9.99 m - 0.0099 mT :
 - (1) 9.980 m
 - (2) 9.9 m
 - (3) 9.9801 m
 - (4) 9.98 m
- 11. In a guitar, two strings A and B made of same material are slightly out oftune and produce beats of frequency 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency ofB will be:
 - (1) 536 Hz
 - (2) 537 Hz
 - (3) 523 Hz
 - (4) 524 Hz
- 12. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prism A) and emerges normally from the opposite siirface. If the refractive index' of the material of the prism is μ then the angle of incidence is nearly equal to :
 - (1) µA (2) $\frac{\mu A}{2}$ (3) KANPU (3) 2.4π × 10⁻⁴ T mA⁻¹ 2A u

The solids which have the negative temperature 13. The capacitance of a parallel plate capacitor with air as medium is 6 μ F. With the introduction of a dielectric medium, the capacitance becomes | 30 μ F. The permittivity of the medium is:

 $(\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2})$

- (1) $0.44 \times 10^{-10} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$
- (2) 5.00 C²N⁻¹m⁻²
- (3) $0.44 \times 10^{-13} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$
- (4) $1.77 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$
- 14. Two particles of mass 5 ke and 10 kg respectively are attached to the two ends of a rigid rod oflength 1m with negligible mass.

The centre of mass of the system from the 5 kg particle is nearly at a distance of:

- (1) 67 cm
- (2) 80 cm
- (3) 33 cm
- (4) 50 cm
- 15. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale. The pitch of the screw gauge is :
 - (1) 0.5 mm
 - (2) 1.0 mm
 - (3) 0.01 mm
 - (4) 0.25 mm
- 16. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes:
 - (1) four times
 - (2) one-fourth
 - (3) double
 - (4) half
- 17. An iron rod of susceptibility 599 is subjected to a magnetising field of 1200 Am⁻¹. The permeability of the .material of the rod is:

 $(\mu_{n} = 4\pi \times 10^{-7} \text{ T mA}^{-1})$ (1) $2.4\pi \times 10^{-5} \text{ T mA}^{-1}$ (2) $2.4\pi \times 10^{-7} \text{ T mA}^{-1}$

(4) 8.0π × 10⁻⁵ T mA⁻¹

[NEET-2020 (PHYSICS) : (13-Sept.-2020)]

- The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is : (c = speed of electromagnetic waves)
 - (1) 1 : c
 - (2) 1 : c²
 - (3) c:1
 - (4) 1:1
- 19. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:
 - (1) π/2 rad
 - (2) zero
 - (3) π rad
 - (4) 3π/2 rad
- 20. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L₁ when mass M is supended from its free end. The expression for Young's modulus is :

(1)
$$\frac{MgL}{AL_1}$$

(2)
$$\frac{MgL}{A(L_1 - L)}$$

$$(3) \quad \frac{MgL_1}{AL}$$

(4)
$$\frac{Mg(L_1 - L)}{AL}$$

- 21. The mean free path for a gas, with molecular diameter d and number density n can be expressed as :
 - (1) $\frac{1}{\sqrt{2}n^2\pi d^2}$
 - (2) $\frac{1}{\sqrt{2}n^2\pi^2d^2}$
 - (3) $\frac{1}{\sqrt{2} \, n\pi d}$ (4) $\frac{1}{\sqrt{2} \, n\pi d^2}$

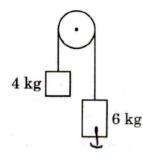
- 22. The energy equivalent of 0.5 g of a substance is:
 - (1) 1.5 × 10¹³ J
 - (2) 0.5 × 10¹³ J
 - (3) 4.5 × 10¹⁶ J
 - (4) 4.5 × 10¹³ J
- 23. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is :
 - (1) 10³ V
 - (2) 10⁴ V
 - (3) 10 V
 - (4) 10² V
- 24. A short electric dipole has a dipole moment of 16×10^{-9} C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is :

$$\left(\frac{1}{4\pi\epsilon_0}=9\times10^9\,\text{Nm}^2\,/\,\text{C}^2\right)$$

- (1) 400 V
- (2) Zero
- (3) 50 V
- (4) 200 V
- 25. A 40 μ F capacitor is connected to a 200 V, 50Hz ac supply. The rms value of the Wrrent in the circuit is, nearly :
 - (1) 2.5 A
 - (2) 25.1 A
 - (3) 1.7 A
 - (4) 2.05 A

(1) $5/2 k_{\rm B} T$

(2) 7/2 k_BT


26. The average thermal energy for a mono-atomic as is : ($k_{\rm B}$ is Boltzmann constant and T, aosolute temperature) :

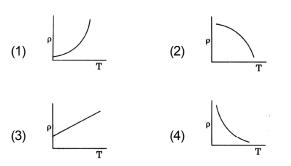
 $\frac{1}{2 n \pi d^2}$ (4) 3/2 k_BT
(4) 3/2 k_BT
(5) 2505225

[NEET-2020 (PHYSICS) : (13-Sept.-2020)]

27. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is fric-tionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is :

- (1) g/5
- (2) g/10
- (3) g
- (4) g/2
- 28. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is :
 - (1) 7.32 × 10⁻⁷ rad
 - (2) 6.00 × 10⁻⁷ rad
 - (3) 3.66 × 10⁻⁷ rad
 - (4) 1.83 × 10⁻⁷ rad
- 29. A cylinder contains hydrogen gas at pressure of 249 kPa and temperature 27°C.

Its density is: (R = 8.3 J mol⁻¹K⁻¹)


- (1) 0.1 kg/m³
- (2) 0.02 kg/m³
- (3) 0.5 kg/m³
- (4) 0.2 kg/m³
- 30. The color code of a resistance is given below:

The values of resistance and tolerance, respectively are :

- (1) 4.7 kΩ, 5%
- (2) 470 Ω, 5%
- (3) 470 k $\Omega,\,5\%$
- (4) 47 kΩ, 10%

31. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper?

- 32. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains and ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opend. The process is :
 - (1) isochoric
 - (2) isobaric
 - (3) isothermal
 - (4) adiabatic

33. When a uranium isotope $\frac{235}{92}$ U is bombarded with a neutron, it generates $\frac{89}{36}$ Kr , three neutrons and:

- (1) ¹⁰¹₃₆Kr
- (2) ¹⁰³₃₆Kr
- (3) ¹⁴⁴₅₆Ba
- (4) ⁹¹₄₀Zr
- 34. A resistance wire connected in the left gap of a metre bridge balances a 10 D. resistance in the right gap at a point which divides the bridge wire in the ratio 3 : 2. If the length of the resistance wire is 1.5 m, then the length of 1 D. of the resistance wire is :
 - (1) 1.5 × 10⁻¹ m
 - (2) 1.5 × 10⁻² m
 - (3) 1.0 × 10⁻² m
 - (4) 1.0 × 10⁻¹ m
- 35. A charged particle having drift velocity of 7.5×10^{-4} m s⁻¹ in an electric field of 3×10^{-10} Vm⁻¹, has a mobility in m² V⁻¹ s⁻¹ of:

(1)	2.5 × 10⁻⁵
(2)	2.25 × 10 ⁻¹⁵
KANPUR(3)	2.25 × 10 ¹⁵
(4)	2.5 × 10 ⁶

- 36. Light with an average flux of 20 W/cm² falls on a non-reflecting surface at nor'; ual incidence liaving surface area 20 cm². The energy received by the surface during time span of 1 minute is :
 - (1) $24 \times 10^3 \text{ J}$
 - (2) 48 × 10³ J
 - (3) 10 × 10³ J
 - (4) 12 × 10³ J
- 37. For which one of the following, Bohr model is not valid :
 - (1) Deuteron atom
 - (2) Singly ionised neon atom (Ne⁺)
 - (3) Hydrogen atom
 - (4) Singly ionised helium atom (He⁺)
- 38. A spherical conductor of radius 10cm has a charge of 3.2×10^{-7} C distributed uniformly. What is the magnitude of electric fiela at a point 15 cm from the centre of the sphere :

$\left(\frac{1}{4\pi\epsilon_0}=9\times10^9\,\text{Nm}^2\,/\,\text{C}^2\right)$

- (1) 1.28 × 10⁶ N/C
- (2) 1.28 × 107 N/C
- (3) 1.28 × 10⁴ N/C
- (4) 1.28 × 10⁵ N/C
- The energy required to break one bond in DNA is 10⁻²⁰ J. This value in eV is nearly :
 - (1) 0.06
 - (2) 0.006
 - (3) 6
 - (4) 0.6
- 40. In a certain region of space with volume 0.2 m³, the electric potential is found to be 5V throughout. The magnitude of electric field in this region is :
 - (1) 1 N/C
 - (2) 5 N/C
 - (3) zero
 - (4) 0.5 N/C

- 41. Along solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is :
 - $(\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1})$
 - (1) 6.28 × 10⁻⁵ T
 - (2) 3.14 × 10⁻⁵ T
 - (3) 6.28 × 10⁻⁴ T
 - (4) 3.14 × 10⁻⁴ T
- 42. Light of frequency 1.5 times the threshold frequency is incident on a photosensitivie material. What will be the photoelectric current if the frequency is halved and intensity is doubled :
 - (1) one-fourth
 - (2) zero
 - (3) doubled
 - (4) four times
- 43. A capillary tube of radius r is immersed in water and water rises in it to a hei:ght h. The mass of the water in the capillary is 5 g. Another capillary tube of radius 2r is immersed in water. The mass of water that will rise in This tube is:
 - (1) 10.0 g
 - (2) 20.0 g
 - (3) 2.5 g
 - (4) 5.0 g
- 44. A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth :
 - (1) 30 N
 - (2) 24 N
 - (3) 48 N
 - (4) 32 N
- 45. A series LCR circuit is connected to an ac voltage source. When L is removed from the circuit, the

phase difference between current and voltage $\frac{\pi}{2}$.

If instead C is removed from the circuit, the phase

difference is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is:

- (1) 1.0
- (2) -1.0(3) zero

(4) 0.5

The Finest Institute For Medical Entrance Exams.

NATIONAL ELIGIBILITY CUM ENTRANCE TEST (UG) SET : F4

[NEET-2020], Test held on 13 Sept. 2020

Subject : **BIOLOGY**

- 46. The ovary is half inferior in :
 - (1) Sunflower
 - (2) Plum
 - (3) Brinjal
 - (4) Mustard
- 47. Identify the wrong statement with regard to Restriction Enzymes :
 - (1) They are useful in genetic engineering
 - (2) Sticky ends can be joined by using DNA ligases
 - (3) Each restriction enzyme functions by inspecting the length of a DNA sequence
 - (4) They cut the strand of DNA at palindromic sites
- 48. Identify the wrong statement with reference to transport of oxygen :
 - Higher H⁺ conc. in alveoli favours the formation of oxyhaemoglobin
 - (2) Low pCO₂ in alveoli favours the formation of oxyhaemoglobin
 - (3) Binding of oxygen with haemoglobin is mainly related to partial pressure of O₂
 - (4) Partial pressure of CO_2 can interfere with O_2 binding with haemoglobin
- 49. In water hyacinth and water lily, pollination takes place by :
 - (1) Wind and water
 - (2) Insects and water
 - (3) Insects or wind
 - (4) Water currents only
- 50. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is 6.6×10⁹ bp, then the length of the DNA is approximately :
 - (1) 2.2 metres
 - (2) 2.7 metres
 - (3) 2.0 metres
 - (4) 2.5 metres

- 51. Dissolution of the synaptonemal complex occurs during :
 - (1) Diplotene
 - (2) Leptotene
 - (3) Pachytene
 - (4) Zygotene

(b) Zinc

- 52. Match the following concerning essential elements and their functions in plants :
 - (a) Iron (i) Photolysis of water
 - (ii) Pollen germination
 - (c) Boron (iii) Required for chlorophyll biosynthesis
 - (iv) IAA biosynthesis
 - (d) Manganese
 - Select the correct option :
 - (1) a-iii, b-iv, c-ii, d-i
 - (2) a-iv, b-i, c-ii, d-iii
 - (3) a-ii, b-i, c-iv, d-iii
 - (4) a-iv, b-iii, c-ii, d-i
- 53. The body of the ovule is fused within the funicle at :
 - (1) Nucellus
 - (2) Chalaza
 - (3) Hilum
 - (4) Micropyle

54. In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is correct ?

- (1) Gross primary producitivity and Net primary productivity are one and same
- (2) There is no relationship between Gross primary productivity and Net primary productivity
- (3) Gross primary productivity is always less than net primary productivity
- KANPU (4) Gross primary productivity is always more than net primary productivity

- 55. Which of the following refer to correct example(s) of organisms which have evolved due to changes in environment brought about by anthropogenic action ?
 - (a) Darwin's Finches of Galapagos islands
 - (b) Herbicide resistant weeds
 - (c) Drug resistant eukaryotes
 - (d) Man-created breeds of domesticated animals like dogs
 - (1) (b), (c) and (d)
 - (2) Only (d)
 - (3) Only (a)
 - (4) (a) and (c)
- 56. Identify the correct statement with reference to human digestive system :
 - (1) Ileum is a highly coiled part
 - (2) Vermiform appendix arises from duodenum
 - (3) Ileum opens into small intestine
 - (4) Serosa is the innermost layer of the alimentary canal
- 57. The product(s) of reaction catalyzed by nitrogenase in root nodules of leguminous plants is/are :
 - (1) Ammonia and oxygen
 - (2) Ammonia and hydrogen
 - (3) Ammonia alone
 - (4) Nitrate alone
- 58. The transverse section of a plant shows following anatomical features :
 - (a) Large number of scattered vascular bundles surrounded by bundle sheath
 - (b) Large conspicuous parenchymatous ground tissue
 - (c) Vascular bundles conjoint and closed
 - (d) Phloem parenchyma absent
 - Identify the category of plant and its part
 - (1) Dicotyledonous stem
 - (2) Dicotyledonous root
 - (3) Monocotyledonous stem
 - (4) Monocotyledonous root
- 59. Bilaterally symmetrical and acoelomate animals are exemplified by :
 - (1) Aschelminthes
 - (2) Annelida
 - (3) Ctenophora
 - (4) Platyhelminthes

- 60. Goblet cells of alimentary canal are modified from:
 - (1) Chondrocytes
 - (2) Compound epithelial cells
 - (3) Squamous epithelial cells
 - (4) Columnar epithelial cells
- 61. Which of the following is not an attribute of a population ?
 - (1) Mortality
 - (2) Species interaction
 - (3) Sex ratio
 - (4) Natality
- 62. Embryological support for evolution was disapproved by :
 - (1) Charles Darwin
 - (2) Oparin
 - (3) Karl Ernst von Baer
 - (4) Alfred Wallace
- 63. Which one of the following is the most abundant protein in the animals ?
 - (1) Lectin
 - (2) Insulin
 - (3) Haemoglobin
 - (4) Collagen
- 64. Match the following columns and select the correct option :
 - Column I
 - (a) Eosinophils
- (i) Immune response
- (ii) Phagocytosis

Column - II

(c) Neutrophils

(d) Lymphocytes

(b) Basophils

- (iii) Release
 - histaminase, destructive enzymes
- (iv) Release granules containing histamine
- (2) a-ii, b-i, c-iii, d-iv
- (4) a-iv, b-i, c-ii, d-iii
- (1) a-i, b-ii, c-iv, d-iii
- (3) a-iii, b-iv, c-ii, d-i

	21	KANPUR (UP)	L	NEE 1-2020 (DIO	LU	UI : (13-Sept2020)] NLI /
65.			-	one levels will cause	70.	, ,
		ease of ovum (ov icle ?	vulatio	n) from the graffian		gene 'l' that controls ABO blood groups :
		Low concentration	oflH			 When I^A and I^B are present together, they expressame type of sugar
	• •					(2) Allele 'i' does not produce any sugar
	• •	Low concentration				(3) The gene (I) has three alleles
		High concentration		-		(4) A person will have only two of the three alleles
	• •	High concentration			71	Which of the following would help in prevention
6.		e sequence that c linked DNA in the		the copy number of ; is termed :		of diuresis ?
	(1)	Palindromic seque	nce			(1) Atrial natriuretic factor causes vasoconstriction
	(2)	Recognition site				(2) Decrease in secretion of renin by JG cells
	(3)	Selectable marker				(3) More water reabsorption due to undersecretion
	(4)	Ori site				ADH
67 .		e plant parts which e within the other		st of two generations-		 (4) Reabsorption of Na⁺ and water from renal tubule due to aldosterone
	(a)	Pollen grains ins	ide the	anther	72.	Montreal protocol was signed in 1987 for contr
	(b)	•	llen gr	ain with two male		of :
	(c)	gametes Seed inside the f	ruit			(1) Release of Green House gases
	• •	Embryo sac insid		vulo		(2) Disposal of e-wastes
		(c) and (d)		(a) and (d)		
	• •	(a) only		(a), (b) and (c)		(3) Transport of Genetically modified organisms fro
8.	• •	.,		and select the correct		one country to another
-		tion :				(4) Emission of ozone depleting substances
		Column - I		Column - II	73.	Meiotic division of the secondary oocyte
	(a)	Clostridium	(i)	Cyclosporin -A		completed :
		butylicum				(1) After zygote formation
	(b)	Trichoderma	(ii)	Butyric Acid		(2) At the time of fusion of a sperm with an ovum
		polysporum				
	(c)	Monascus	(iii)	Citric Acid		(3) Prior to ovulation
		purpureus				(4) At the time of copulation
	(d)	Aspergillus niger	(iv)	Blood cholesterol	74.	By which method was a new breed 'Hisardale'
				lowering agent		sheep formed by using Bikaneri ewes and Marin
	(1)	a-i, b-ii, c-iv, d-iii				rams?
	(2)	a-iv, b-iii, c-ii, d-i				(1) Cross breeding
	(3)	a-iii, b-iv, c-ii, d-i				(2) Inbreeding
	(4)	a-ii, b-i, c-iv, d-iii				(3) Out crossing
9.	The are	-	ate from	n the base of the stem		(4) Mutational breeding
	(1)	Prop roots				
	(2)	Lateral roots				
	(3)	Fibrous roots				
	(4)	Primary roots				

75. If the head of cockroach is removed, it may live for few days because :

- The head holds a small proportion of a nervous system while the rest is situated along the ventral part of its body
- (2) The head holds a 1/3rd of a nervous system while the rest is situated along the dorsal part of its body
- (3) The supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen
- (4) The cockroach does not have nervous system

76. Identify the incorrect statement :

- (1) Sapwood is the innermost secondary xylem and is lighter in colour
- (2) Due to deposition of tannins, resins, oils etc, heart wood is dark in colour
- (3) Heart wood does not conduct water but gives mechanical support
- (4) Sapwood is involved in conducton of water and minerals from root to leaf

77. Select the option including all sexually transmitted diseases :

- (1) AIDS, Malaria, Filaria
- (2) Cancer, AIDS, Syphilis
- (3) Gonorrhoea, Syphilis, Genital herpes
- (4) Gonorrhoea, Malaria, Genital herpes
- 78. Identify the wrong statement with reference to immunity :
 - (1) Active immunity is quick and gives full response
 - (2) Foetus receives some antibodies from mother, it is an example for passive immunity
 - (3) When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called "Active immunity".
 - (4) When ready-made antibodies are directly given, it is called "Passive immunity".
- 79. Match the following columns and select the correct option :
 - Column I
- Column II (i) Gene therapy

(ii) Cellular defence

- (a) Bt cotton
- (b) Adenosine deaminase deficiency
- (c) RNAi
- (d) PCR

- (1) a-ii, b-iii, c-iv, d-i
- (2) a-i, b-ii, c-iii, d-iv
- (3) a-iv, b-i, c-ii, d-iii
- (4) a-iii, b-ii, c-i, d-iv
- 80. Which of the following statements is correct ?
 - (1) Adenine pairs with thymine through three H-bonds
 - (2) Adenine does not pair with thymine
 - (3) Adenine pairs with thymine through two H-bonds
 - (4) Adenine pairs with thymine through one H-bond
- 81. According to Robert May the global species diversity is about :
 - (1) 50 million
 - (2) 7 million
 - (3) 1.5 million
 - (4) 20 million
- 82. Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their :
 - (1) Defence action
 - (2) Effect on reproduction
 - (3) Nutritive value
 - (4) Growth response
- 83. Which of the following pairs is of unicellular algae?
 - (1) Anabaena and Volvox
 - (2) Chlorella and Spirulina
 - (3) Laminaria and Sargassum
 - (4) Gelidium and Gracilaria
- 84. The enzyme enterokinase helps conversion of :
 - (1) Caseinogen into casein
 - (2) Pepsinogen into pepsin
 - (3) Protein into polypeptides
 - (4) Trypsinogen into trypsin
- (iii) Detection of HIV
 infection
 (iv) Bacillus
 thuringiensis

	Tal.	KANPUR (UP)	LINEE I-		LU	UI J: (13-Sept2020)] NLI / 5
85.		tch the following c	olumns and se	lect the correct	89.	Select the correct statement :
	opt	tion :				(1) Insulin acts on pancreatic cells and adipocytes
		Column - I	Colun	nn - II		(2) Insulin is associated with hyperglycemia
	(a)	6–15 pairs of	(i) Trygo	n		(3) Glucocorticoids stimulate gluconeogenesis
		gill slits				(4) Glucagon is associated with hypoglycemia
	(b)	Heterocercal	(ii) Cyclo	stomes	90.	Presence of which of the following conditions in urine are indicative of Diabetes Mellitus ?
		caudal fin				(1) Ketonuria and Glycosuria
	(c)	Air Bladder	(iii) Chone	drichthyes		(2) Renal calculi and Hyperglycemia
	(d)	Poison sting	(iv) Osteid	chthyes		(3) Uremia and Ketonuria
	(1)	a-iv, b-ii, c-iii, d-i				(4) Uremia and Renal Calculi
	(2)	a-i, b-iv, c-iii, d-ii			91	Which of the following is correct about viroids ?
	(3)	a-ii, b-iii, c-iv, d-i			51.	-
	(4)	a-iii, b-iv, c-i, d-ii				 They have DNA with protein coat. They have free DNA with protein coat.
86.	The	e process respon	sible for facil	itating loss of		(2) They have free DNA without protein coat.
		ter in liquid form f		grass blades at		(3) They have RNA with protein coat.
	nig	ht and in early mo	orning is :			(4) They have free RNAwithout protein coat
	(1)	Imbibition			92.	How many true breeding pea plant varieties did
	(2)	Plasmolysis				Mendel select as pairs, which were similar except in one character with contrasting traits?
	(3)	Transpiration				(1) 14
	(4)	Root pressure				
87.		ich of the followin				(2) 8
	-	ester for further s Effluents of primar	-	ent ?		(3) 4
	(1)	Activated sludge	yılealment			(4) 2
	• •	Primary sludge			93.	Which of the following regions of the globe
		Floating debris				exhibits highest species diversity?
88.	• •	tch the following	g coloumns a	and select the		(1) Himalayas
	COI	rrect option :	_			(2) Amazon forests
		Columns - I	Columns			(3) Western Ghats ofIndia
	(a)	Floating Ribs	()	ed between		(4) Madagascar
				nd and hth ribs		
	(b)	Acromion	(ii) Head			
	(D)	Acronnon	(II) Head Hume			
	(c)	Scapula	(iii) Clavid			
	• •	Glenoid cavity	. ,	ot connect		
	()	,	. ,	he sternum		
	(1)	a-iii, b-ii, c-iv, d-i				
	(2)	a-iv, b-iii, c-i, d-ii				
	(3)	a-ii, b-iv, c-i, d-iii				
	(4)	a-i, b-iii, c-ii, d-iv				
		ow light Inotit				

9 4.	Ma	tch the following colu	[NEET-2020 (BIO					NLI / 6
	opt	tion.		•		one turn of citric ac		
		Column-I	Column-II				,	
	• •	Placenta	(i) Androgens		. ,	Two		
	(b)	Zona pellucida	(ii) Human Chorionic		(2)	Three		
			Gonadotropin		(3)	Zero		
	(0)	Bulbo- urethral	(hCG)		(4)	One		
	(C)	glands	(iii) Layer of the ovum	98.	Wr	hich of the following	ı state	ements is not correct?
	(d)	Leydig cells	(iv) Lubrication of the	00.		-		
	(9)		Penis		(1)			A and B chains linked
	(1)	a-(iii), b-(ii), c-(iv), d-(i)				together by hydroge		
		a-(ii), b-(iii), c-(iv), d-(i)			(2)		ered in	sulin is produced in E-
	(3)	a-(iv), b-(iii), c-(i), d-(ii)				Coli.		
	(4)	a-(i), b-(iv), c-(ii), d-(iii)			(3)	In man insulin is sy	nthesis	sed as a proinsulin.
95.		tch the trophic levels amples in grassland e	with their correct species cosystem.		(4)	The proinsulin has peptide.	an e	xtra peptide called C-
	(a)	Fourth trophic level	(i) Crow	99.				
	(b)	Second trophiclevel	(ii) Vulture			tion :		
		First trophic level	(iii) Rabbit			Column I		Column II
	• •	Third trophic level	(iv) Grass		a.	Organ of Corti	i.	connects middle ear and pharynx
	Se	lect the correct option	ו:		b.	Cochlea	ii.	Coiled part of the
	(4)	(a) (b) (c) (d)			~.			labyrinth
		(iv) (iii) (ii) (i)			C.	Eustachian tube	iii.	
	(2)	(i) (ii) (iii) (iv)			d.	Stapes	iv.	window Located on the basilar
	(3)	(ii) (iii) (iv) (i) (iii) (ii) (i) (iv)			u.	Slapes	IV.	membrane
00			d Dalahing and sugarahis		(1)	a-iv, b-ii, c-i, d-iii		
96.	-	opers of Penguins an	d Dolphins are examples		(2)	a-i, b-ii, c-iv, d-ii		
	of:				(3)	a-ii, b-iii, c-i, d-iv		
	(1)	Industrial melanism			(4)	a-iii, b-i, c-iv, d-ii		
	(2)	Natural selection		100.		-		e cell cycle and enter
	(3)	Adaptive radiation				getative mactive sta ige (Go). This proce	-	his is called quiescent curs at the end of:
	(4)	Convergent evolution			(1)	Sphase		
					(2)	G_2 phase		
					(3)	M phase		
					(4)	G₁phase		
				ANPU				

101. The process of growth is maximum during:

- (1) Senescence
- (2) Dormancy
- (3) Log phase
- (4) Lag phase

102. The QRS complex in a standard ECG represents:

- (1) Depolarisation of ventricles
- (2) Repolarisation of ventricles
- (3) Repolarisation of auricles
- (4) Depolarisation of auricles
- 103. Bt cotton variety that was developed by the introduction of toxin gene of Bacillus thuringiensis (Bt) is resistant to :
 - (1) Plant nematodes
 - (2) Insect predators
 - (3) Insect pests
 - (4) Fungal diseases
- 104. In which of the following techniques, the embryos are transferred to assist those females who cannot conceive?
 - (1) ICSI and ZIFT
 - (2) GIFT and ICSI
 - (3) ZIFT and IUT
 - (4) GIFT and ZIFT

105. Floridean starch has structure similar to :

- (1) Mannitol and algin
- (2) Laminarin and cellulose
- (3) Starch and cellulose
- (4) Amylopectin and glycogen
- 106. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - (1) Ethylene
 - (2) Abscisic acid
 - (3) Cytokinin
 - (4) Gibberellin

- 107. Match the following columns and select the correct option.
 - Column-I Column-II (a) Gregarious, (i) Asterias polyphagous pest
 - (b) Adult with radial (ii) Scorpion symmetry and larva with bilateral symmetry
 - (c) Book lungs (iii) Ctenoplana
 - (d) Bioluminescence (iv) Locusta
 - (A) a-iii, b-ii, c-i, d-iv
 - (B) a-ii, b-i, c-iii, d-iv
 - (C) a-i, b-iii, c-ii, d-iv
 - (D) a-iv, b-i, c-ii, d-iii
- 108. Which of the following statements are true for the phylum-Chordata?
 - (a) In Urochordata notochord extends from head to tail and it is present throughout their life.
 - (b) In Vertebrata notochord is present during the embryonic period only.
 - (c) Central nervous system is dorsal and hollow.
 - (d) Chordata is divided into 3 subphyla; Hemichordata, Tunicata and Cephalochordata.
 - (1) (a) and (b)
 - (2) (b) and (c).
 - (3) (d) and (c).
 - (4) (c) and (a)

109. The first phase of translation is :•

- (1) Aminoacylation of tRNA
- (2) Recognition of an anti-codon
- (3) Binding of mRNA to ribosome
- (4) Recognition of DNA molecule
- 110. Identify the basic amino acid from the following.
 - (1) Lysine
 - (2) Valine
 - (3) Tyrosine
 - (4) Glutamic Acid

111. The infectious stage of Plasmodium that enters the human body is :	117. Identify the substances having glycosidic bond and peptide bond, respectively in their structure:				
(1) Female gametocytes	(1) Cellulose, lecithin				
(2) Male gametocytes	(2) Inulin, insulin				
(3) Trophozoites	(3) Chitin, cholesterol				
(4) Sporozoites	(4) Glycerol, trypsin				
112. Identify the correct statement with regard to G ₁ phase (Gap 1) of interphase.	118. Experimental verification of the chromosomal theory of inheritance was done by:				
 Cell is metabolically active, grows but does not replicate its DNA. 	(1) Boveri (2) Morgan				
(2) Nuclear Division takes place.	(3) Mendel				
(3) DNA synthesis or replication takes place.	(4) Sutton				
(4) Reorganisation of all cell components takes place.	119. The specific palindromic sequence which is				
113. In light reaction, plastoquinone facilitates the transfer of electrons "from :	recognized by EcoRI is : (1) 5' - CTTAAG - 3'				
(1) PS-I to NADP⁺	3' - GAATTC - 5'				
(2) PS-I to ATP synthase	(2) 5' - GGATCC - 3'				
(3) PS-II to Cytb ₆ f complex	3' - CCTAGG - 5'				
(4) Cytb ₆ f complex to PS- I	(3) 5'-GAATTC-3'				
114. The oxygenation activity of RuBisCo enzyme photorespiration leads to the formation of:	(5) 5 - GAATTO - 5 3' - CTTAAG - 5'				
(1) 1 molecule of 6-C compound	(4) 5' - GGAACC - 3'				
 (2) 1 molecule of 4-C compound and 1 molecule of 2-C compound 	3' - CCTTGG - 5'				
(3) 2 molecules of 3-C compound	120. Name the enzyme that facilitates opening of DN				
(4) 1 molecule of 3-C compound	helix during transcription.				
115. Which is the important site of formation	(1) DNA polymerase				
glycoproteins and glycolipids in eukaryotic cells?	(2) RNA polymerase				
(1) Golgi bodies	(3) DNA ligase				
(2) Polysomes	(4) DNA helicase				
(3) Endoplasmic reticulum	121. Select the correct match.				
(4) Peroxisomes	(1) Sickle cell anaemia – Autosomal recessive				
116. Match the following:	trait, chromosome-II (2) Thalassemia – X linked				
(a) Inhibitor of catalytic (i) Ricin activity					
(b) Possess peptide (ii) Malonate	 (3) Haemophilia – Y linked (4) Phenylketonuria – Autosomal dominant trait 				
bonds (c) Cell wall material in (iii) Chitin fungi	122. From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask:				
(d) Secondary metabolite (iv) Collagen	(1) CH_4 , H_2 , NH_3 and water vapour at 600°C				
Choose the correct option from the following:	(2) CH_3 , H_2 , NH_3 and water vapour at 600°C				
(A) a-iii, b-iv, c-i, d-ii (B) a-ii, b-iii, c-i, d-iv	(3) CH_4 , H_2 , NH_3 and water vapour at 800°C				
(C) a-ii, b-iv, c-iii, d-i (D) a-iii, b-i, c-iv, d-ii	(4) CH_3 , H_2 , NH_4 and water vapour at 800°C				
	v ' 3' Z' 4				

123.	Match the following columns and select the correct	
	option.	

Column - II

(ii) Diabetes mellitus

(iii) Diabetes insipidus

(iv) Addison's disease

- Column I
- (a) Pituitary gland (i) Grave's disease
- (b) Thyroid gland
- (c) Adrenal gland
- (d) Pancreas
 - (a) (b) (c) (d)
- (1) (iii) (i) (iv) (ii)
- (2) (ii) (i) (iv) (iii)
- (3) (iv) (iii) (i) (ii).
- (4) (iii) (ii) (i) (iv)
- 124. Cuboidal epithelium with brush border ofmicrovilli is found in :
 - (1) proximal convoluted tubule of nephron
 - (2) eustachian tube
 - (3) lining of intestine
 - (4) ducts of salivary glands
- 125. Strobili or cones are found in :
 - (1) Marchantia
 - (2) Equisetum
 - (3) Salvinia
 - (4) Pteris

126. Snow-blindness in Antarctic region is due to :

- (1) High reflection of light from snow
- (2) Damage to retina caused by infra-red rays
- (3) Freezing of fluids in the eye by low temperature
- (4) Inflammation of cornea due to high dose of UV-B radiation

127. Match the following diseases with the causative organism and select the correct option.

(iii) Salmonella

(iv) Haemophilus

- Column-I Column-II (a) Typhoid (i) Wuchereria (b) Pneumonia (ii) Plasmodium
- (c) Filariasis
- (d) Malaria (a) (b) (c) (d)
- (1) (ii) (i) (iii) (iv)
- (2) (iv) (i) (ii) (iii)
- (3) (i) (iii) (ii) (iv)
- (4) (iii) (iv) (i) (ii)

128. Choose the correct pair from the following:

- (1) Nucleases Separate the two strands of DNA
- (2) Exonucleases Make cuts at specific positions within DNA
- (3) Ligases Join the two DNA molecules
- (4) Polymerases Break the DNA into fragments
- 129. Which of the following statements about inclusion bodies is incorrect :
 - (1) They lie free in the cytoplasm.
 - (2) These represent reserve material in cytoplasm
 - (3) They are not bound by any membrane
 - (4) These are involved in ingestion of food particles.
- 130. Select the correct events that occur during inspiration.
 - (a) Contraction of diaphragm
 - (b) Contraction of external inter-costal muscles
 - (c) Pulmonary volume decreases
 - (d) Intra pulmonary pressure increases
 - (1) (a), (b) and (d)
 - (2) only (d)
 - (3) (a) and (b)
- (4) (c) and (d)

131. Ray florets have:

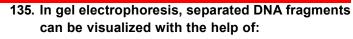
- (1) Hypogynous ovary
- (2) Half inferior ovary
- (3) Inferior ovary
- (4) Superior ovary

132. Match the organism with its use in biotechnology.

- (a) Bacillus (i) Cloning vector
 - thuringiensis
- (b) Thermus (ii) Construction of aquaticus first rDNA molecule
- (c) Agrobacterium (iii) DNA polymerase tumifaciens
- (d) Salmonella (iv) Cry proteins typhimurium

Select the correct option from the following:

- (a) (b) (c) (d)
- (1) (iii) (ii) (iv) (i)
- (2) (iii) (iv) (i) (ii)
- (3) (ii) (iv) (iii) (i)
- (4) (iv) (iii) (i) (ii)


133. Which of the following is not an inhibitory substance governing seed dormancy?

- (1) Phenolic acid
- (2) Para-ascorbic acid
- (3) Gibberellic acid
- (4) Abscisic acid
- 134. Match the following with respect to meiosis:
 - (a) Zygotene (i) Terminalization
 - (b) Pachytene (ii) Chiasmata
 - (c) Diplotene (iii) Crossing over
 - (d) Diakinesis (iv) Synapsis

Select the correct option from the following:

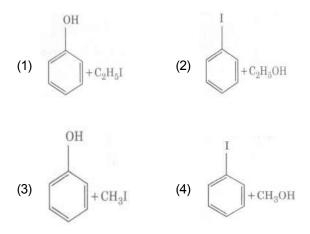
(a) (b) (c) (d)

- (1) (i) (ii) (iv) (iii)
- (2) (ii) (iv) (iii) (i)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)

- (1) Acetocarmine in UV radiation
- (2) Ethidium bromide in infrared radiation
- (3) Acetocarmine in bright blue light
- (4) Ethidium bromide in UV radiation

The Finest Institute For Medical Entrance Exams.

CHEMISTRY NEET-2020 (UNSOLVED)


- 136. Which of the following is a natural polymer?
 - (1) polybutadiene
 - (2) poly (Butadiene-acrylonitrile)
 - (3) cis-1, 4-polysioprene
 - (4) poly (Butadiene-styrene)
- 137. On electrolysis of dil, sulphuric acid using Platinum (Pt) electrode, the product otbained at anode will be:
 - (1) H_2 S gas (2) SO_2 gas
 - (3) Hydrogen gas (4) Oxygen gas
- 138. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is:
 - (1) $\frac{4}{\sqrt{3}} \times 288 \text{ pm}$ (2) $\frac{4}{\sqrt{2}} \times 288 \text{ pm}$
 - (3) $\frac{\sqrt{3}}{4}$ x 288 pm (4) $\frac{\sqrt{2}}{4}$ x 288 pm
- 139. The correct option for free expanion of an ideal gas under adiabatic condition is:
 - (1) q < 0, $\Delta T = 0$ and w = 0
 - (2) q > 0, ΔT > 0 and w > 0
 - (3) q = 0, $\Delta T = 0$ and w = 0
 - (4) q = 0, $\Delta T < 0$ and w > 0
- 140. Which of the following set of molecules will have zero dipole moment?
 - (1) Nitrogen trifluoride, beryllium difluoride, water, 1, 3-dichlorobenzene
 - (2) Boron trifluoride, beryllium difluoride, carbon dioxide, 1-4, dichlorobenzene
 - (3) Ammonia, beryllium difluoride, water 1, 4dichlorbenzene
 - (4) Boron trifluoride, hydrogene fluoride, carbon dioxide, 1, 3-dichlorobenzee
- 141. A mixture of N_2 and Ar gases in a cylinder contains 7 g of N_2 and 8 g of Ar. If the total pressure of the mixture of the gases in the cylinder is 27 bar, the partial pressure of N_2 is:

[Use atomic masses (in g mol⁻¹): N = 14, Ar = 40]

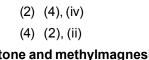
- (1) 15 bar (2) 18 bar
- (3) 9 bar (4) 12 bar

- 142. Identity the correct statements for the following:
 - (1) $CO_2(g)$ is used as refrigerant for ice-cream and frozen food.
 - (2) The structure of C_{60} contains twelve six carbon rigns and twenty five carbon rings.
 - (3) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline
 - (4) CO is colorless and odourless gas.
 - (1) (2) and (3) only
 - (2) (3) and (4) only
 - (3) (1), (2) and (3) only
 - (4) (1) and (3) only

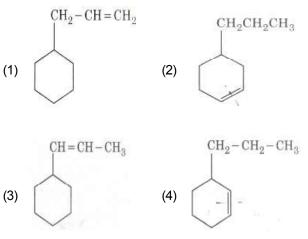
143. Anisole on cleavage with HI gives:

- 144. The mixture which shows positive deviation from Roult's law is:
 - (1) Acetone + Chloroform
 - (2) Chloroethane + Bromoethane
 - (3) Ethanol + Acetone
 - (4) Benzene + Toluene
- 145. Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
 - (1) $F^- < SCN^- < C_2O_4^{2-} < CN^-$
 - (2) $CN^{-} < C_2O_4^{2-} < SCN^{-} < F^{-}$
 - (3) $SCN^{-} < F^{-} < C_2O_4^{2-} < CN^{-}$
 - (4) $SCN^- < F^- < CN^- < C_2O_4^{2-}$

NEET-2020	CHEM	IJTRY	NLI / 2
46. Which of the following has ma atoms?	ximum number of	152. Hydrolysis of sucrose is gir reactions.	ven by the following
(1) 1 g of CO ₂ (g) [Atomic mass o	of O = 16]	Sucrose + $H_2 O \rightleftharpoons Gluco$	ose + Frcutose
(2) 1 g of Li(s) [Atomic mass of L	_i = 7]	If the equilibrium constnt (K	_c) is 2 x 10 ¹³ at 300K,
(3) 1 g of Ag(s) [Atomic mass of A	Ag = 108]	the value of $\Delta_{r}G^{\circ}$ at the sat	ame temperature will
(4) 1 g of Mg(s) [Atomic mass of	Mg = 24]	be:	
47. Which of the following alkane of good yield by Wurtz reaction?	cannot be made in	 (1) 8.314 J mol⁻¹ K⁻¹ x 300 K x (2) -8.314 J mol⁻¹ K⁻¹ x 300 K x 	· · · ·
	Butane	(3) -8.314 J mol ⁻¹ K ⁻¹ x 300 K x	< In(2x10 ¹³)
	3-Dimethylbutane	(4) 8.314 J mol ⁻¹ K ⁻¹ x 300 K x	In(2x10 ¹³)
48. Which of the following is not co	-	153. The calcualted spin only mag	gnetic moment of Cr ²⁺
monoxide?		ion is: (1) 5.92 BM (2)	2.84 BM
(1) The carboxyhaemoglobin (ha	emoglobin bound to		4.90 BM
CO) is less stable than oxyha	emoglobin	154. Measuring Zeta potential is	
(2) It is produced due to incomple	ete combustion.	with property of colloidal so	
(3) It forms carboxyhaemoglobin.		(1) Stability of the colloidal pa	rticles
(4) It reduces oxygen carrying ab	pility of blood.	(2) Size of the colloidal particl	es
49. For the reaction, 2Cl(g) $ ightarrow$ Cl $_{ m 2}$ (g)	, the correct option	(3) Viscosity	
is:		(4) Solubility	ationia datamanta
(1) $\Delta_r H < 0$ and $\Delta_r S > 0$		155. Which of the following is a (-
(2) $\Delta_r H < 0$ and $\Delta_r S < 0$		(1) Cetyltrimethyl ammonium l(2) Sodium dodecylbenzene s	
		(3) Sodium laury sulphate	
(3) $\Delta_r H > 0$ and $\Delta_r S > 0$		(4) Sodium stearate	
(4) $\Delta_r H > 0$ and $\Delta_r S < 0$		156. Find out the solubility of Ni Given that the ionic product	
50. Match the following and identify	the correct option.		1 x 10 ⁸ M
)(HCO ₃) ₂ + (HCO ₃) ₂	(3) 2 x 10 ⁻¹³ M (4)	2 x 10 ⁻⁸ M
(2) Temporary (ii) Ar	n electron	157. Identify compound X in the of reactions:	ionowing sequence
hardnes of water de	ficient hydride	CH ₃	СНО
(3) B ₂ H ₆ (iii) Sy	nthesis gas		
	on-planar structure	Cl ₂ /hv X H ₂ O	\bigcirc
(1) (2) (3) (4)	-	373 K	
(1) (iii) (iv) (ii) (i)			
(i) (ii) (ii) (iv)		CHCl ₂	
(<u>-</u>) (i) (ii) (iv)			
(4) (iii) (i) (i) (iv)		(1) (2)	
51. Urea reacts with water to for decompose to form B, B whe Cu ²⁺ (aq), deep blue colour sol What is the formulat of C from	n passed through ution C is formed.	Cl	
(1) Cu(OH) ₂			
(2) $CuCO_3.Cu(OH)_2$		(3) (4)	
(3) CuSO ₄			\checkmark


- (3) CuSO₄
- (4) [Cu(NH₃)₄]²⁺

New Light Institute


	T-2020 CHEM The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na, is responible for the transmission			166.	Wh	iich of the follow bylamine test?	ving a	NLI/3 nmine will give the
		terve singals. Calcium	(2) Potassium			N(CH ₃) ₂		$^{\mathrm{NHC}_{2}\mathrm{H}_{5}}$
	• •	Iron	(4) Copper					
159.	An		entration of the reactants		(1)		(2)	
		threshold energy						
	(2)	collision frequency				$\rm NH_2$		NHCH ₃
	``	activation energy						
	. ,	heat of reaction						\land
160.	Th 4.6	e rate constant for	a first order reaction is required to reduce 2.0 g of		(3)		(4)	
		500 s	(2) 1000 s	167.	lde	ntify the incorrect	match	
	• •	100 s	(4) 200			Name		IUPAC Official Name
	``		s (F) required to produce		` '	Unnilunium	(i)	Mendelevium
	20	g of calcium from m	olten CaCl ₂ (Atomic mass		• •	Unnitrium Unnilhexium	• •	Lawrencium Seaboragium
		Ca = 40 g mol ⁻¹) is :			(3) (4)	Unununnium		Darmstadtium
	(1)		(2) 4		• •	(3), (iii)	• •	(4), (iv)
	(3)		(4) 2			(1), (i)		(4); (iv) (2), (ii)
		-	tement from the following					nd methylmagnesium
	(1)	Vapour phase refining Van Arkel method	g is carried out for Nickel by	(chl	oride followed by h		
	(2)	Pig iron can be mould	led into a variety of shapes.		` '	Tert, butyl alcohol	. ,	Isobutyl alcohol
	• •	0	e iron with 4% carbon.		• •	Isopropyl alcohol	• • •	Sec. butyl alcohol
	. ,		listered appearance due to	169. 3	Su	crose on hydrolysis	gives	
	(.)	evolution of CO ₂		((1)	α -D-Glucose + β -	D-Fruc	tose
163.	lde	ntify a molecule whi	ch does not exist.		(2)	α -D-Fructose + β	-D-Fru	ctose
	(1)	C ₂	(2) O ₂		(3)	eta -D-Glucose + $lpha$ -	D-Fruc	tose
	(3)	He ₂	(4) Li ₂		(4)	α -D-Glucose + β -	D-Gluc	cose
	sec		tion is more stable than a ation because of which of	170. /	An	-	sis giv	ves methanal as one
	(1)	-R effect of -CH ₃ grou	DS			OII OII OII		
		Hyperconjugation				$CH_2 - CH = CH_2$		$CH_2CH_2CH_3$
		-I effect of -CH ₃ group	5			\mathbf{k}		\downarrow
		+R effect of -CH, grou		((1)	$\left[\right]$	(2)	
165.	HC and	l was passed throug	a solution of CaCl ₂ .MgCl ₂ following compound(s)			\smile		

- (1) Only MgCl₂
- (2) NaCl, $MgCl_2$ and $CaCl_2$
- (3) Both $MgCl_2$ and $CaCl_2$
- (4) Only NaCl

 I_5 t_3

- ohol
- alcohol

CHEMIJTRY

NEET-2020

CHEMISTRY

171. Identify the incorrect statement.

- (1) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.
- (2) The oxidation states of chromium in CrO_4^{2-} and $Cr_2O_7^{-2}$ are not the same
- (3) Cr²⁺ (d⁴) is a strongest reducing agent than Fe²⁺(d⁶) in water.
- (4) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.

172. Which of the following is a basic amino acid?

- (1) Tyrosine
- (2) Lysine
- (3) Serine
- (4) Alanine
- 173. which of the following oxoacid of sulphur has -O-O- linkage?
 - (1) $H_2S_2O_8$, peroxodisulphuric acid
 - (2) $H_2S_2O_7$, pyrosulphuric acid
 - (3) H_2SO_3 , sulphurous acid
 - (4) H_2SO_4 , sulphuric acid

174. Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:

- (1) β -Elimination reaction
- (2) Follows Zaitseve rule
- (3) Dehydrohalogentaiton reaction
- (4) Dehydration reaction
- (1) (2), (3), (4) (2) (1), (2)., (4)
- (3) (1), (2), (3) (4) (1), (3), (4)

175. Match the following :

	Oxide			Nature
(1)	со		(i)	Basic
(2)	BaO		(ii)	Neutral
(3)	Al ₂ O ₃		(iii)	Acidic
(4)	Cl ₂ O ₇		(iv)	Amphoteric
Wh	ich of th	e followi	ng is co	rrect option?
	(1)	(2)	(3)	(4)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(i)	(ii)	(iii)	(iv)
(4)	(ii)	(i)	(iv)	(iii)

- 176. The freezing point depression constant (K_r) of benzene is 5.12 K kg mol⁻¹. The freezing point depresion for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off up to two decimal places):
 - (1) 0.40 K
 - (2) 0.60 K
 - (3) 0.20 K
 - (4) 0.80 K
- 177. Paper chromatography is an example of:
 - (1) Thin layer chromatography
 - (2) Column chromatography
 - (3) Adsorption chromatography
 - (4) Partition chromatography
- 178. What is the change in oxidation number of carbon in the following reaction?

 $\text{CH}_{\!_4}(g) + 4\text{Cl}_{\!_2}(g) \rightarrow \text{CCl}_{\!_4}(I) + 4\text{HCl}(g)$

- (1) -4 to +4
- (2) 0 to -4
- (3) +4 to +4
- (4) 0 to +4
- 179. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as:
 - (1) Cross Cannizzaro's reaction
 - (2) Cross Aldol condensation
 - (3) Aldol condensation
 - (4) Canizzaro's reaction

180. The number of protons, neutrons and electrons in $\frac{175}{71}$ Lu , respectively, are:

- (1) 71, 71 and 104
- (2) 175, 104 and 71
- (3) 71, 104 and 71
- (4) 104, 71 and 71